o*rT

ol s

EPCC-SSP 1996

Applications of Parallel Processing in Management Science

and Operational Research

D.P. Lee

Abstract

This paper examines the range of possible solution approaches within the areas of
Operational Research (OR) and Management Science (MS) that could benefit from the
application of High Performance Computing (HPC) utilizing a parallel processing paradigm
implemented with Message Passing Interface (MPI). The results include an overview of the
Infinite Horizon Discounted Markov Process (IHDMP) using Pre-Jacobi (PJ) Iteration with
Porteus Bounds (PB)and a comparism of the results partially differentiated with respect
to an isolated operational parameter, demonstrating how the variation of input affects
the final solution set. This paper includes a graphical demonstration of the relationship
between the monotonic and contraction properties of the IHDMP and the prime number
system describing the Regular Rectilinear Markov Primes (RRMPS). Also described is a
comparism of the computational performance of the serial and parallel algorithms.

§X

7

EPCC-SSP 1996 2

1 Introduction

This paper deliberates upon the efficient implementation and subsequent operation of infinite
horizon discouted Markov decision processes utilizing value iteration type solution algorithms.
Although other algorithms are discussed and their properties expounded, here we shall be deal-
ing primarily with the Pre-Jacobi (PJ) or optimal equation algorithm, using Porteous Bounds
(PB), and the PJ numerical properties and solutions. References to the problem include [1,2,3 4]
which tabulate solutions to deterministic and probalistic models relating to inventory control,
[8.9,10] which include solutions to and analysis of up to six problems of a serial to parallel
nature, each containing different properties relating the performance of an algorithm to the
properties of the problem being solved and [6,7] which describe a detailed mathematical and
algorithmic analysis of Markov Chains including a theoretical study, theorems and proofs. In
this paper we consider one problem concerning the inventory control of a fixed state warehouse
with n input parameters, holding n-1 values constant whilst varying 1 over a fixed range in
order to elicit information regarding the relative properties of the optimum value policy and the
optimum value function. The process is the computational equivalent of partially differentiating
the function singularly with respect to all available parameters. We also address the parallel
solution of Markov decision processes, practical examples of which are often computationally
unmanageble on a serial machine, owing to memory allocation and execution time. The results
indicate that parallel computors allow faster solutions and larger problem pools to be solved.
Deeper theoretic and graphical investigation describes the relationship between the prime num-
bers and the monotonic and contraction properties of the optimum policy function created by
the Markov Decision Process.

1.1 The Markov Decision Process (MDP)

The Markov decision processes which we consider can be described as follows.

The state space S ={1,2, ... ISI} is finite.

At any stage, when in state i, an action k can be chosen from the action space k; and an immediate
reward rf received. future rewards are discounted with factor 3 ,where 0 < 3 < 1.

The probability that the process will be in state j at the next stage is given by the transition
probability p};

This paper only considers problems in which the action spaces are finite and rf and p}; are
independent of stage.

The maximum discounted reward over an infinite horizon starting in state i is denoted by V* (i)
is the unique solution of

v II&%{T? +ﬁ2pfﬂ/}”‘1} (0

Jjes

A policy is an assignment of an action to each state. A policy with discounted reward equal to
V* is termed an optimal policy and a policy é with discounted reward V* is termed e-optimal if

EPCC-SSP 1996 3

V* =V, <e,)

where
IVl = maz;(V(i)). 3)

V% satisfies the above equation with k; restricted to the assigned action for state . Given a small
tolerance, the aim is to find an e-optimal policy and vectors of bounds V= and V', such that

Vo<vr<vt 4)

and
[VF-v7l., <e, Q)

1.2 The Computing Envirionments

The computational results were obtained using a CrayT3D and a T800 Meiko Computing Sur-
face.

The T800 Meiko Computing Surface contains 130 nodes. Each T800 node has at least 4 Mbytes
of memory and a peak speed of around 1 Mflop. The nodes are divided into domains which
range in size from 2 to 130 processors.

The Cray T3D possesses 512 Dec Alpha processors with a peak performance of 40 Gflops. The
T3D has 20 Gbytes of main memory, 212 Gbytes of disc and a Multi-Terabyte mass storage
device. A recent addition to the system is a 10 pe J90 with around 1 Gbyte of central memory,
intended as a pre-processing and post-processing facility for the T3D.

1.3 Overview

In section 2, the algorithms generally used to solve infinite horizon discounted Markov decision
processes are discussed including the stopping rules and conditions, the algorithmic selection
and the method of storage. The associated problem parameters are described in section 3,
followed by their relationship with the Markov Decision Process formulation in section 4.
the serial implementation is described in section 5, with its parallel counterpart in section
6. Sections 7 and 8 deliniate the partitioning, efficiency and major factors affecting Markov
Decision Processes respectively. The serial and parallel results are tabulted in section 10, leading
to the implementation of the parallel optimisation program in section 11, the results of which
are contained in section 12. Section 13 describes the final conclusions, followed by the article
references.

2 Description of the Algorithms

The following algorithms are those most widely used and are the best candidates for solution
methods with respect to infinite horizon discounted Markov Decision Processes because the
properties of Markov Decision Processes guarantee convergence in most cases and the matrices
for policies are often large and sparse, the conditions under which transition iterative methods

EPCC-SSP 1996 4

are often preferred for systems of linear equations. The first three algortihms have proved to be
the most efficient.[10]

Pre-Jacobi (PJ) :

V' = max {H!(V,_,)} ©6)

k€k;

where

Hf(v) = {rf +ﬂ2pfm”‘1} (7)

JES

The Pre-Jacobi is also referred to as value iteration, succesive approximation or the optimal
equation. The PJ is rarely used to solve systems of linear equations.

Gauss-Seidel (GS) :

V" = max
ek,

®)

rf+ {qupfjvn(j) + Zj>ipfjvn—1(j)}
1 — Bpf;

Unlike in PJ and Jacobi where the components of V;™ can be calculated independently of each
other, in Gauss-Seidel the components of V;" have to be calculated in the order of increasing
state.

Successive Over-Relaxation (SOR) with relaxation parameter w > 1:

n 4 S Va0 + Sy Ve ()

1— Bph, }} + (I =w)Voi(@). 9

With w =1, Successive Over-Relaxation is equivalent to GS. The SOR normally possesses no
monotonic or contraction properties.

Jacobi (J)

(10)

k€k;

4+ 85 Vasi)
n 3 #i FijV¥n-1
Vi :max{ 1]—ﬁp2“i

Since the convergence properties of Jacobi are known to poor, it will be given no further
consideration, other than for the purpose of algorithmic comparism.

EPCC-SSP 1996 5

2.1 Stopping Rules

In order to terminate these iterative procedures, upper and lower bounds V*? and V},,, , are re-
quired. These bounds are calculated from the sequence of values contained in the Value function
vector, { V" }. Here we will use the method of the Porteus Bounds to solve the halting problem.

2.2 The Porteus Bounds

The Porteus Bounds (PB) exploit the monotonic and contraction properties of the mappings in
PJ, J and GS. Since SOR does not generally have these properties, the PB cannot be applied to
this algorithm.

V70 = VDl < 125 {mmae V2 0) = Vi) = min AV, = Vi 0} < ¢)

With the bounds as shown, the required convergence criterion in equation (5) is satisfied.[10]
Thus, varying the input parameter epsilon {¢}, will adjust the convergence and any related
properties.

2.3 Selecting the Optimum Algorithm

In all the algorithms if the k; contains a single action for all i, then those schemes are equivalent
to the standard schemes for solving linear equations. Since the update rules in all of the
above schemes are linear, the value vector V,, may be expressed in terms of V,,_; by V,, =
MV, _,. M is termed the iteration matrix for the policy which is selected at the n'” iteration.
The convergence of the different schemes is largely determined by the eigen-structure of the
iteration matrices used. The iteration matrix M for PJ has the form P where P is the transition
matrix for the current selected policy. The eigenvalues of GP are 3 times the eigenvalues of P
and the eigenvectors are the same. Since P is a stochastic matrix it has largest eigenvalue 1 and
corresponding eigenvector (1,1, ... ,l)T (The iteration matrices in PJ are not strictly stochastic,
but are equal to a scalar multiple of a stochastic matrix and possess similar properties. These
results are exploited by the PB with the result that the convergence of PJ using stopping rule
PB is determined by the sub-radius of the transition matrices for the policies used during the
algorithm.(The sub-radius of a matrix is the modulus of the eigenvalue with 2" largest modulus).
The iteration matrices of the other schemes do not possess this stochastic property and the PB
are therefore less efficient.[8] For this reason we will define the solution implementation using
Pre-Jacobi using Porteus Bounds. vspace0.2in

24 Data Structures

The probability distribution will be of form poisson and is necessarily truncated, since prob-
abilities less than some specified tolerance ¢ are ignored and zero values are therefore created.

EPCC-SSP 1996 6

It is inefficient to store transition probabilities that are equal to zero. The most efficient im-
plementations to date use ’indirect addressing’. the immediate rewards and non-zero transition
probabilities are stored in a One-Dimensional array called DATA. The addressing information
is contained in three One-Dimensional arrays, STATE, ACTION and MOVE.

For action k € k; in state i €S,
r¥ = DATA (ACTION (STATE (i+1) + k + 1))
pf,MOVE(j)—l = DATA ())
wheres ACTION (STATE (i+1) +k + 1) +1 < j < MOVE (ACTION (STATE (i+1) +k + 1))
Example with CAPACITY =2

| STATE [1 [5][8]

| ACTION |4 |1[3]6]|7]10]13]9]17]

MOVE | 2 [0t [5 [1t ottt o9 (2t [1F ot {121t ot |16] 2 | 1+ | oF!

20

277

0 0 T T T 2 2 2 2 0 0 1 1 1
DATA | rg Poo | "o | Poa | Poo | 7o | Po2 | Poa | Poo | "1 | P11 | Pio |71 | P12 | P11 | Pio

79

0
P22

S={0,12} K,={0,12} K, ={01} K,={0}
PY,=0ifj£0 PY;=0if j#00r1 P{;=0if j#0,1 or2
Pi;=0ifj£0or 1 Pl;=0if j#0,1 or 2

P2,=0if j#0,1 or 2

3 Description of the Problem Parameters

BETA Discount factor.
TOLERANCE Determines the stopping criterion.
CAPACITY Maximum number of items that can be stored.

LEAD Supply lead time = time between placing an order and receiving the goods.
Assumed to be either O or 1 period.

FIXED Fixed order cost.
UNIT Unit cost per item ordered.
HOLD Cost of holding stock per item per period. Expressed as a percentage of unit

cost. Applied to items in stock immediately before a replenishment opportunity.
STOCKOUT Cost per item of demand that cannot be met from inventory.
LAMBDA Parameter for the Poisson model of demand = Mean demand per period.

Assumption: Time between successive replenishment opportunities = 1 period.

Initially, this example has a storage capacity of 119 individual units implying 120 states. The
fixed order cost is £10, unit cost £0.50, holding cost £0.035 per unit per period and stockout cost
£20 per unit. The lead time is one period and the demand per period is modelled by a Poisson

EPCC-SSP 1996 7

distribution with mean 2.5 units per period. The discount factor, 0.95 and the tolerance 0.001
are used in the evaluation of the Porteus bounds to allow probabilities of less than 0.00005 to
be ignored.

4 Relationship with General MDP Formulation

State space: S ={0,1, ... CAPACITY}
Action space in state i: K; ={0,1, ... ,CAPACITY}

Immediate cost when action k is taken in state i:

with LEAD = 0:
. i+k—1 €—>\ d] 00 e—A)\d . i
rf = 6(k)FIXED+KUNIT+3 > S (i+k=d)HOLD+$ > S (d=i=k)STOCKOUT
d=0 d=i+k+1
(12)
with LEAD = 1:
. i—1 €—>\ d] oo 6—>\ d] i
rf = 6(k)FIXED+KUNIT+3 S (i=d)HOLD+$ > —(d=)STOCKOUT
d=0 d=i+1

13)

Probability of being in state j next period when action k is taken in state i:

witn LEAD =0: trmi
) L, SO ds ik
pi; = Zd:i+k = ifj=0 (14)
0 otherwise
with LEAD = 1:

Canitk—g
e AA

SR of k<j<i+k
pi,j = Zzozz+k % Zf] = k (15)
0 otherwise

S Implementing the Serial Program

1 Read the Problem Parameters 1
goto 2

EPCC-SSP 1996 8

2 Generate the Probability Distribution 2
goto 3

3 Generate the Markov Decision Process Data 3
goto 4

4 Zero the Value Function Vector 4
goto 5

5 Perform the Value Iteration 5
goto 6

6 Are the Porteus Bounds Satisfied 6
if yes goto 9 else goto 7

7 Perform the Value Iteration 7
goto 8

8 Are the Porteus Bounds Satisfied 8
if yes goto 5 else goto 9

9 The Value Iteration has Converged 9
goto 10

‘ 10 Output the Results 10 ‘

6 Implementing the Parallel Program

The general principle used to satisfy the distribution reqirements of chain, torus and ring
topologies is to partition the state space and allow efficient allocation of a specific set of states
to each processor in the network. Each processor will then be responsible only for the part of
the calculation which is specific to its allocated states. This method reduces both the calculation
time and the amount of data which is required to be stored on any single processor. The
Value Function Vector, V,,, the vector of the completed correct values with respect to the final
unconditional probabilities is the only data which needs to be duplicated on every processor.
This is because every processor performing a calculation involving the Value Function Vector
accesses it much more often than it is required to be updated, reducing the communications
time.

6.1 Distribution

Given a network of N processors and a partition { P, };_, of the state space S, allocate the 7"
set in the partition to the r** processor in the network. Initially all processors have a copy of V;,
=0. At the n'" iteration, (n > 1) the r'" processor calculates V,,(i) Vi € P,,

maz;ep, (Vo (i) — V,_1(3)) and minep, (V, (1) — V,_1(2)) (16)

EPCC-SSP 1996 9

and then sends these values to all other processors in the network so that each processor can
calculate
maz;es(V, (1) = V,_1(7)) and min;cs(V, (1) — V,,_1()) 17

Which is required for the evaluation of the Porteus Bounds. Each processor also has a copy of
V, () Vi € S before the start of the (n + 1)*" iteration. It is a simple matter to verify that the r'"
processor only requires the following data:[8]

{{rf Y, € PV, € 1@},{3@ Y€ PV, €5,V € Ay} ,Vn} (18)

7 Partitions and Efficiency

The choice of partition will affect the time required for the communication in the algorithm and
the load balancing. For high efficiency, the choice of the partition and the ordering of the states
within each set of the partition must give a good load balancing assuming that communications
overheads are small. communications overheads account for only a small part of the drop in
efficiency. The major part is due to poor load balancing which in this problem remains, even
when there is only one action in each state. Since the workload per action is almost constant,
load balancing with one action per state can be achieved by allocating an equal number of states
to each processor. Howeveer, when this was tried, there was a slight increase in solution times
due to the poor initial load balancing. A random ordering of the state space resultsin a better
load balance when there is only one action per state beause the maximum number of states
allocated to a processor is smaller.[10]

8 Major Factors Affecting Markov Decision Processes [8]

1. Discount factor 3

Tolerance ¢

Number of states M

Average and variation of the number of actions per state

Average and variation of the number of transitions per action

A O

Speed of mixing (A problem is said to be rapidly mixing if given any starting state, the
probability of being in any other state n stages later converges quickly to a limit as n
increases. The property of mixing is related to ergodicity)

7. Concentration of transition probabilities in the lower triangle of the transition matrices.

8. Closeness of the structures of the transition matrices of the non-optimal policies to that
of the optimal policy.

9. Closeness of the values of the non-optimal policies to that of the optimal policy

EPCC-SSP 1996 10

9 Serial and Parallel Results

The values in the tables following are given in seconds and exclude the time taken to obtain the
required data initially. The poor load balancing, due to the variation in the number of actions
per state is the major limiting factor regarding the efficiency of PJ with PB when the number of
processors used is greater than 11.[10]

N;;- Number of iterations

N,,.- Number of processors

T ;- Solution time = calculation time + communication time
t.,- Average time per iteration = T} ,;/ N,

t.ian- Standardised time = T, ,;/best time for that problem

e- Efficiency = ((1/N,,)*serial solution time)/T’,; Xs

€.0mm- Lhe communications overheads =T, ...,/ T

Serial Value Iteration
Iterations | T, tow | Tstan

93 5741|062 | 7.24

Syncronous Non-Overlapped Parallel Pre-Jacobi

Processors | Iterations | T, € €comm
1 93 5741 | 100 0.0
5 93 1134 | 1012 | 03
11 93 532 | 98.1 1.2
25 93 263 | 873 49
49 93 174 | 673 132

10 Preliminary Conclusion

Since optimum efficiency is a major issue, noting that for 1< ¥, <11, the number of processors
provides approximately only a 1% variation in efficiency at a cost of increasing overheads with
respect to a monotonic increase in the N,.. For N, > 11, the variation in efficiency is >2.2%
and increases monotonically. Since on occasion we may need to investigaterelations requiring
> 11 processors, and since efficiency hardly varies between 1 and 5 processors, an optimum
configuration for the purposes of satisficability (a state close to optimisation), may be taken to
be the use of 1 processor per parameter set. In this way, communications overheads do not affect
the performance and load balancing is not an issue. With this in mind, a parallel program has
been constructed to allow thevariation of any one of the 9 input parameters and to place each
distinct partitioned set of 9 elements on a single processor. This provides a family of results from
which the optimum solution can be chosen. In this fashion, the use of 50 processing elements
on a varied stock capacity of say 120 units to 170 units would return a set of 50 unique solutions
with respect to 120,121,122, ... ,170 units. This could be viewed either as a further step in
optimisation if we choose the best policy and value function, or as a basis for experimentation
and research into the properties of the solutions in order to provide a more manageable solution,
perhaps via linear extrapolation and the production of a convergent polynomial.

EPCC-SSP 1996 11

11 Implementation of the Parallel Optimisation Program

In this paper, the parallel optimisation program was implemented using a chain topology,
although a ring or torus might have been used. The general principle was to create a discrete
set of n values, with respect to any single input parameter « say, with n-1 intervals of regular
length,

A1y Qgy ey gy ey Oy

by requesting a specified start = @; and end point = «,, on processor zero.

(Since we have truncation and round off errors, «v,, is not necessarily equal to the specified end
point). The number of intervals is created by the size of the processing environment with

size = no of processing elements = w say,

length of interval
end — start

=¢=——" 19)

w

then
oy = start and «, = a; + ¥ *x w = actualendpoint (20)

Each set of input parameters is related to V by

2%
Voz, o 80{2 (21)
where 0 «; is the change in « from «;_; to «; and
V = f{a7v7 %767 p? "'7¢} Sa/y (22)

This process describes a family of functions, one set .5; of which is distributed to processor i in
the set of processors

S i=40,1,2,..,w—1}

via the broadcasting of every constant parameter and the sending of each independent «; to
Processor
t €5;

. The Markov process then operates independently on each processor, at the end of which we
process the results of each
Vo, and V'

and finally gather the results to processor zero for the displaying and returning of data.

EPCC-SSP 1996 12

12 Results

The parallel optimisation program has been designed to deliver the functional results displayed
in table 1. These can be viwed graphically, using PLOTMTYV or some similar program, or read
as data values directly from the files. Every function is returned with respect to the number
of processors. this has allowed properties of the delivered MDP Optimum Policy and Value
Function to be investigated to a high degree.

Table 1: Returning Functions

FILENAME | X-AXIS Y-AXIS Z-AXIS FUNCTION
aagedp Rank Arithmetic Average - Vin Arithmetic Average
aaverge Rank Arithmetic Average - Policy Arithmetic Average
capacty Rank Capacity - Warehouse Capacity
demand Rank Demand - Highest Demand
deviate Rank Standard Deviation - Policy Standard Deviation
gagedp Rank Geometric Average - Vin Geometric Average
gcdmat policy policy - GCD(Policy,Policy)
globmn Minimum - - Policy Global Minimum

globmnd Minimum - - Vfn Global Minimum
globmx Maximum - - Policy Global Maximum
globmxd Maximum - - Vfn Global Maximum
iterate Rank Iterations - Number of Iterations
maximum Rank Maximum - Policy Maximum
minimum Rank Minimum - Policy Minimum
polcy3d State Policy Vin State/Policy/Vin
policy State Policy - State/Policy
primes Count State Prime Count/Primes/State
sum Rank Sum - Policy Sum
vary Rank Variable - DP Variable/Rank
varyl Rank Variable - Int Variable/Rank
vin State Vin - Value Function/Rank
vinmax Maximum - - Global Vfn Maximum
vinmin Minimum - - Global Vfn Minimum
vinprod Rank Product - Vfn Product/Rank
vinsum Rank Sum - Vfn Sum/Rank

Table 2 delineates a number of the initial returned values for comparism, where the & symbol
indicates a state of constancy. Figures 1 and 2 display the Optimal Policy and the Value function
respectively, in their initial state.

Table 2: Initial State of Parameters
Processors | Iterations | Highest Demand | Policy | Value Function

1 93 11 © ©

EPCC-SSP 1996

13

Tue Sep 3 19:01:43 1996

7380 ;

7000

Optimum*Policy

1(|)0
State

120

Figure 1: Initial Optimum Policy Function

EPCC-SSP 1996

Tue Sep 3 19:02:01 1996

State
"—
110]
100 -
90 .
3]]
o]]
=]
=]]
5 80 g
m J J
*
=P .]
=]
)]
> 70-]
60 .
50
40-
1

State

Figure 2: Initial Value Function

EPCC-SSP 1996 15

12.1 Example of Variation

In table 3, a number of the results for a varied discount factor [are tabulated where,

® = No change

6 = Was there a change in parameter ?

v = Yes
® = No great change, but some deviation which requires explaination or further
investigation.
Table 3: Variable Discount Factor
Processor Rank 0 1 2 3 4 5
Discount 3 09 091 0.92 0.93 094 0.95
Highest Demand 11 11 11 11 11 11
No of Iterations 61 69 77 87 103 125
6 Policy ® ® ® O] O] ® ©
§ Vin 7 v v v v v v
Aaverage 484192 | 4842.05 | 4842.19 | 4842.61 | 4842.85 | 4843.14
Policy Sum 576189 | 576204 | 576221 | 576271 | 576299 | 576334
Vfn Sum 1212.37 | 1385.80 | 1610.98 | 1909.58 | 2325.86 | 2931.97

In this case, there was an irregular deviation indicated by @ between states 1 and 10 in each
returned value of Optimum Policy(See figures 3.4,5 and 6 for the initial and expanded views)
occuring in the region of the singular point between the same values of states on the Value
function related curve.(See figures 7 and 8).

12.2 Regular rectilinear Markov Primes

The irregularity and occasional regularity of the returning function primes, displaying the prime
numbers contained in the optimum policy initially gave no indication of any connection or
relation between the sequence of the optimum policy values and the prime numbers. However,
when the Greatest Common Denominator (GCD) function was studied in its graphical form,
there seemed to be some regularity (other than diagonal symmetry which is irrelevant in this case
since GCD(policy,policy) is both the x-axis and the y-axis). See figure 9. Closer inspection of
the graphics and the corresponding data indicated the existence of regularly spaced prime GCDs,
beginning at the diagonal where the original optimum policy values appear (since GCD(A,A)
= A) and extending in the x and y directions Rectilinearly, from wherever such a point was
initially created. The distribution of the RRMP will necessarily form both a monotonic and a
contraction property in the resulting optimum policy curve. It is interesting to note that a regular
sequence does not begin until after state 10, indicating the possibility of an initial flaw in the
optimisation program and/or algorithm. Figures 10,11,12 and 13 display expanded views of the
RRMP for the case of the prime number 17.

EPCC-SSP 1996 16

13 Conclusion

The most important property to usefor optimisation of speed is the degree of mixing. When the
problem is rapidly mixing, Pre-Jacobi will perform well. In terms of efficiency, PJ parallelises
well but communication overheads were the major limiting factor.[10] Allocating 1 parameter set
per processor is both efficient and versitile, allowing the related family structure of asymptotes,
standard deviations and maxima and minima to be extrapolated in order to further optimise of to
investigate fundamental properties of the Markov Decision Process. A graphic example of this
has been demonstrated through the use of the greatest common denominator function, gcdmat,
showing the relation between the Rectilinear Markov Primes (RMP) and the monotonic and
contraction properties of PJ.[6]

References

[1] D.T. Phillips, A. Ravindran, J.J. Solberg. Operations Reasearch Princples and Practice.
[2] J.Kidd. Managing with Operational Research.

[3] Budnick, Mojena and Vollmann. Principles of Operations Research for Management.
[4] R.A.Howard. Dynamic Programming and Markov Processes.

[5] S.M. Ross. Introduction to Stochastic Dynamic Programming.

[6] V.S.Borkar. Topics in Controlled Markov Chains.

[7] WJ. Stewart. Introduction to the Numerical Solution of Markov Chains.

[8] T.W. Archibald, K.I.M. McKinnon, L.C. Thomas. Serial and Parallel Value Iteration
Algorithms for Discounted Markov Decision processes.

[9] L.C. Thomas, T.W. Archibald, K.I.M. McKinnon. On the Random Generation of Markov
Decision Processes. Working Paper, Department of Mathematics, University of Edin-
burgh, 1991.

[10] T.W. Archibald. Parallel Iterative Solution Methods for Markov Decision Processes.

Dennis Lee is an ex-R.E.M.E. Telecommunications Technician and L.LE.E. As-
sociate completing studies as a third year student for a BSc in Mathematics and
Computing

Project Supervisors were:
Professor Tom Archibald and Professor Jake Ansell Department of Business
Studies, Edinburgh University

