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necessary, throughout
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E 1D 1124131 = x= 20mod3 = x= 2+3q

A, V192021221 @jl = x= 2lmod5 = x= 145
. (*)_]

2o, 118 |17 |'16 | 15 ra = x= 22mod7 = x= 1+7c

And 2+3a=1mod5 = 3a=4mod5 = a=3mod5 = a=3+5bp,
195 sothat 2+3a = 11+15b=1mod7 = 3b=5mod7 = b =4mod7 = b=4+7c.
Thus = x=11+60+105¢ = 71+105c. And since 37 <71, we test ged(37,71). As
gcd(37,71) =1, then the value 37 is prime.
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Section 2

The Pattern in the Primes

The construction of dual lanes of composite even, composite odd, and odd prime values, in the
form of Folded Numbers (FNs) (Appendix B), demonstrates that where p=24, +4,,
Andy, e N AL, # {0,1}, and both A and A, possess a common factor >1, (which
subsequently is also a factor of 27 for p even, and 2i+1 for p odd, where i indexes each of the
A, and 4, ), then the pair of values A, and A, can be found in the same column, r =i, This
means that the values containing a common factor ¢ = gcd(p, A Ay }, ie {0,],2,...,?}, are the
same distances from the start-point column indexed by 7 =0. When 4, = 4,, then the pairs of

column-related factors are equal distances from the same point. An example of this relationship

is detailed below, for the case P = 4, + A, =30, with A, Ay € {0, l} necessarily excluded.

“r= 0|1 |2fs]a|sfe] 7|8 fe]0]1]|iz]13 14'155]

A, =15]16 |17 |18 | 19|20 |21 | 22|23 |24 | 25| 26|27 | 28|25 | 30

A, =15 |14 [13f12| 11|10l 9ls|7]sls|alsl2l2]2

Common-factor-less column pairs are relatively prime, and may also contain one, or two,
primes. In the table above, common even factors in columns are related by a light-grey shaded
long rectangle formed from two component rectangles below the emboldened line, whilst
common odd factors in columns are related by a dark-grey shaded small single component
rectangle above the emboldened line. The relatdonship is equivalent to the number-line 0 ~ 30

B

shown below, in which the pairs of (shaded) factor-related valucs and pairs of (unshaded) primes

(7.23), (11,19), (13,17), are related through their summation to 30.

2

o] lli[i{-ﬂglﬁhE’»-.igi!'é,'['wi[[ o - -

4‘ 1':;5"]_1 (5-|\1 7 [IS] 19]30] 2‘1 [2_2
~

23p4l2spe E7pE 29 30)

13

The factor products g in a FN, located in the same column as another factor product of

the form 2n—g, neN, possessing the same factor, are termed as Mirror Factors (MFs) (Section
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I, page 4). Where the mirror components of a N are not MI¥s, then they are relatively prime

(RP). Where both components are prime, we terin thein as Micror Primes (MPs) (Appendix B). If
a module (Appendix A, page 10) of the form n:JI’:‘II p, :1'2{1,2,...,}”} p.elP,  p =2
Py =3 p;=5,..., (Appendix C), with # neccessarily even, describes the mirror factor
(q,’lﬁlp, ~q} r=14', ge N, then we term the module, a MF module (MI'M), and the
Relatively Prime (RP) components as MRPs. When two primes can be related in the same way,
we term the pair, Module Mirror Ptimes (MMPs), expanded upon in Appendix B. MEMs of
(necessarily) even length Z,, n= ,Iill p,, ne€2N_ satisfy modular arithmetic modulo 7, in which

2, is a ring (MP(W),*), (Appendix A, page 6) as well as a module. The module Z,

3
n=IIp =30, denoted Z,, is a module over the ting Z, generating Z, partitioned at each
=1 2 2

30n, n=N.

Considering now, modules formed as the canonical prime-products

o

1 3
IfIIp, =p =2, I}p, = pgty, = 2.3=6, qp, = Py = 23523,

and 1n general,

then, by construction, all prime-products generated are even, since p, =2, and they then operate
as prime-product R —modules (PPRMs). All PPRMs are MFMs.

Returning to modules over the ring of integers Z, we begin with the module of length
Il p ti=1= p :p =2 units. A visual representation of this Z, module is, , where we
1

can note that whilst 2 is the only even prime, so that Vu € N, 2n is composite, the shaded area
has as a subset, the set of odd numbers, of which a subset is the set of odd primes. That is, every

odd prime is of the form 2n+1, n €N. Thus a row of arbitrary length n € N, represented as Z,
modules, will always have the odd numbers #, congruent to Z, modulol, and the even numbers

n, congruent to Z, modulo 2.

Dennis Lee
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Moving now to the module of length IIp, 1i= {1,2}:> PPy = 2.3 =06 units, and
forming the module of 6 units via concatenation of three two-unit modules = 2+2+2 = 6.
We can represent this Z, module visually, as the sum of three Z, modules, with the new prime

3, and its multiples, excluded:

i ofifafife] [r]zfdal5Te]
i 2 3
o |, @2 |, B2 |, 12 _ 5 ls

= ]2[s [+ 5 6]

We can then note that since 2,4, and 6 are even, and 3 (and 6) are divisible by the new prime

3. then concatenation of the modified Z, modules

3 (45 ]6]

provides a visual representatdon of the corresponding fact that all odd primes >3, are of the
form 6k =1, k€ N. [1]. In any concatenation of any length, of Z, modules, since we have
excluded only the primes 2 and 3, and their multiples, then no value (greater than 1) remaining

in the concatenation equivalent in N, will contain a multple of 2 or 3. Here, using three Z,

modules, this 1s

| 203145 l6 7 I8 lo [1olta]i2l13]14]15]16]17] 18]

which delivers the (shaded) values 5, 7, 11, 13, 17, ..., all of which are prime. Note that
following this methodology, the first shaded composite would be the squate of 5, 5*5 =25,
and the next would be 35, which expressed as a product of primes, is 35=5%7,

In general, when the MI'Ms are R —modules of the form Z -modules, n = q p,, then

r+l

ne2N, and Z, is a module over the ring Z, (Appendix A), and the values Z<n = 1—% p,, can be
o
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14

represented as p,., stacked rows of the initial Z -module, or as a single length of p,,,

Z -modules in series, as indicated below.

< Initial Z -module of length #
D single row of p, ., concatenated Z -modules
Iows
of
Z -module ”:H(Plrpzv-"»pr )
70 In order to gencrate the next initial Z -module, we must remove the latest (new) prime,

and its multiples. The module-generation procedure is then iterated. In these representations, the
properties of FNs, MMFs and MMPs, arc always valid.
We can thus consider the next modue in the sequence, of length

[T g, 84 = {1,2,3}::> Pi-Dy-ps = 2.3.5=30 units, formed via concatenation of five, G-unit
: 3

75 modules = 6+6+6+6+6=5%6=30. The Z,, module can be represented visually, following

the same methodology detailed above, (but excluding generation of the five stacked rows, for

clarity), whose structure is detailed in Appendix C, as

5 5 S A I PN A G PO o

=
80
| (5) 7 11 13 17 19 23 (25 29
“HEN B EER N EEE HR BEE B EEER A
which, with the latest (new) prime 5, and its multiples removed from the module =
! 7 113 1719 23 29
T T 1T E TR B TTETE TTE TTTT B
85 Note that in this work, the value 1, in an #" modulé in 2 concatenation of modules, is

" i th palle T . é 7 P
interpreted as a value 31, in the (i’l.—])“ module. This will be indicated as (3)]. Thus the

Dennis Lee
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modules of 30 elements are partitioned as '{(.))l.?,.3 ..... 29.30;. Liach Z., module can describe a

maximum of eight primes 30m+{(3)1,7,11,13,17,19,23,29}, me N with each module

(excluding the first, since 1 is not a prime) implying three twin primes {(1 1,13), (1 7.1 9), (29,(3)1)},

and the related twin primes (30u+(11,13), 30v+(17,19), 30w+ (29,3)1)}, for various

u,v,we N

Since the primes used to construct the Z;, module, and their multiples, corresponding to
the clear squares, are removed from the module and partition the module, then excluding the
value 1, every other value in the module will correspond to a prime, or a product of primes, each

prime component of which is greater than the largest prime used to construct the module,

Through concatenation of processed Z -modules in this iterative manner, a recucring pattern of
n ’ [s

composite (stacked row) lanes, generated by the primes less than or equal to p,, and their

respective composites, generates the pattern in the primes. Note that generation of a Z -module

r

f 2 . )
n=I1p,, only ensurcs that the values Pedaewss P:n wl} have been propetly sieved for primes.
=1 ’

Thus the pattern is described via the regularity of genetation, and the symmetry involved, outside

r+l

of the propetly primed values {1,2,...,;}{‘1, —l}, in the region [l,E,...,pil,...,l:Il D, }, through

the generation of sequential prime modules, ptior to removal of the latest (new) prime, and its
multiples from the newly generated module, examples of which are presented in Appendix B,
with module structure clarified in Appendix C.

We can be further assured that the pattern is the general pattern sought, since the
removal, from any initial module, of primes less than or equal to p, and the subsequent
concatenation of the processed module, generates the recurring omission of primes in any new,
larger module, for every value of p., » =N, at both ends of each concatenated module.
Eixamples of this patterning for the values 30, 210, and 2310, are demonstrated in Appendix
B. We can note at this point, that where the Goldbach Conjecture, that every even number > 2 is

a sum of two primes, is proven to be true, then every MI'M contains 2 MMP pair.

Dennis Lee



16

=l

4 b : P = g T S = : = FreTEel e | e R .
Considering the row of values of 2 I'N containing the smaller valucs | hell s E and the

L -l

row of larger values above them, ':l +1i0p,, H1 p,J then the properties of I'Ns, MFMs, and
= R =

MMPs give rise to the tollowing general theorem:

T E§
The Lee-Prime Theorem
Given an odd integer
1.
me p,.,j;lj[p, , Piim, p,eP,r=N,, p =2 p,=3 p,=5..,
then
ITp —m, manoddprime
120 Y= ,
.
[1p,—m,  mcomposite (including prime to a power)
1=l
is a prime ¥ = Py > Des
isapower n €N, ofaprime p, >p,: ¥=p;,
or is a composite formed from primes p”-I I J=>1:each 2, “ > p,, and H]H
4] n :
counts the distinct primes 1\ =11 p,’, for some values of p, €P,n, eN.
/ 7 !
125

Let a prime of the form W be termed
Lee-prime if m is prime,
and
Lee-composite-prime if m is composite.
130 Subsequently, every prime is cither Lee-prime, or Lee composite-prime. The primality of W can
be determined trivially, through (Zeusian) examination of gcd(Q,‘P), where

W

Y o it 3 :
£ = !(I"I et P& [\/‘_P ] < P for [*] the greatest integer function.
=1 g fe

Dennis Lee
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Section 3

Counting Primes

[t has been demonstrated in Section 2, page 14, that given an initial Z -module of length n,

I r r+l
labeled ‘A’ in the diagram below, for which # = 'I_TI p,, thensince p, n=p, 1lp, = ;1:1[ P, we

=1

can form the next module, the Z, . ,-module, via concatenation as a single row of p,,
Z,-modules, labeled below as B, or equivalently, as a set of p,,, aligned rows of the Z -module,

labeled as C. Every sub-module of the concatenation of modules described in A, B, and C,
possesses precisely the same structure; thus temoving in both B, and C, the multiples of each of
the primes used in order to form the initial Z -module, labeled as A. Suppose now, that initial
module A is subsequently ‘sieved’ in order to ensure that the module contains only primes. We
shall term such a module as a sicved module (SM). Correspondingly, excluding the initial sieved
module (SM) A, we shall term all other sub-modules of B, and C, (which necessarily contain
composites), as unsieved modules (uSM).

We are now in a position to remove all of the composite values from B (and equivalently

g
r+l

C), via the removal of any primes < VH P, | » which were not removed eatlier, and their
) i
multiples, where [“]é’ denotes the greatest lower bound. We shall denote the largest prime < [*]“",

as ["‘]“’ , implying p, = [V IIp, | , wrtan initial module of length n = lj[l D,

T L T T - [

v

Dennis Lee
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Removing the additional primes and their multiples from module B (and/or equivalently module

G, generaies the sicved module (SM) of modules, indicated above as L. The SM of modules D,
rl

is entirely equivalent to the single module E, of length m = ,II[ D,

Thus, the work here, in conjunction with the details provided in Section 1, Section 2, and
the Appendices Secton A, Section B, and Section C, inform us that there are three different
types of prime module; those we have met carlier, which have the canonically listed primes in
ascending order and their multiples, removed; those which have had values removed as the
primes used in order to generate a new (sieved) module and their multiples, termed SMs; and the
untreated list of modules of identical structure termed uSMs.

Since the structure of each of the sub-modules of the uSMs B, and C, is precisely the
same, then excluding row one, any primes evident in any row, will be located in the same column
positions as those primes (and/or squares), in row 1. Also, since the concatenation of the
sub-modules of the uSMs B, (and equivalently C), delivers an even value, which is then
symmetric about a central value, then where we treat the uSM as a FN, Bertrands Postulate

proven by Chebyshev, that for any integer # >3, there is always at least one prime p , between

n and 2n—2 [1], implies that the list of upper numerically greater values of the corresponding
SM I'N will always contain at least one prime. Since we are dealing with a SM, then by the
property of MMPs (Appendix B), any upper-value SM FN prime will always sit above cither a
prime, or a square, and be larger than the largest prime component used to generate the SM, or 2
prime raised to a power, whose prime component is larger than the largest prime component
used to gencrate the SM.

Deliveting an approximate count of the number of primes and/or twin primes less than
or equal to any value ne N, is assisted through initial use of the module of length

3
n= H] P, =30, described in Section 2, page 14, shown below, as a measure,
i

@ [T TT I 1o Wi o [ 13 [ 111 P

in which as eatliet, the value (3)I at position 1, implies the prime value 31. This possesses 3
twin primes [(I k. 13), (17,19). (29, (3)1)}, and two single primes {7,23 }, or alternatively, 8 single
primes in total. We shall label the total number of primes generated at any stage #, by &,.

‘The basis for a third-stage calculation is then &, =8, and £, then needs to be

determined for each stage ne N ;. The iterative procedure for the generation of new primes in

Dennis Lee
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oo . : | : 8
addition to those already secured in a module, is that the " module space is concatenated (in a
single line, or as a list of module rows) p,,, tmes, whereupon all of the composites are removed,
thus leaving a list of primes, some of which were carlier generated, and others which are new

. e g - 3 5 & . o = . . b
primes. This implies the iterative function &, = p &, —n(r), in which n(r) counts the number
of removed, newly generated composite values. An efficient algorithm generating r}(n)_, for any
n €N, for which U(r) is a subset, follows:

2 . L —lee . . .
Secure the list of prime numbers less than or equal to [\m] €N, (in this work, we are dealing

.
specifically with the case =11 p,).
¥ =1

STEF 1 Beginning with the smallest prime number, p, =2, form the list of composites

g

n ¢

5 2 . : ® |8
containing the value 2, in canonical sequence, from 2, to [Ejl , where [“] denotes the

greatest lower bound. This is simply the set of values 2.{1,2,. ; ,%}
STEP 2: Moving to the next lareest prime =3, form the list of composites containing
o o P 3 2 B
a8
the value 3, in canonical sequence, from 3, to l;} , excluding any values in the list which
3

contain any prime smaller than the current prime. This is the prime p, =3, followed by the
i) . . - . . - - .
square 37, then the ascending list of primes, and composites formed from primes greater than
n

P, =3, taken from the set of values {(33 4 1), . .,3}.

STEP 3: Dealing now with each prime p, in sequence, we follow the methodology

delineated in STEP 2, untl the list of primes and composites < {\/;]L e N, Is depleted.
STEP 4: Sum each final number of components generated, remove the initial number of
generating primes, and add [, for the listed value 1. The total is the total aumber of composite
values in the list {2,..., I"I}, plus I, which we have earlier denoted as 77(?’). The number of primes
in the list {l,Z,...,n}, 1s then 1 —U(r).

An example, for the case n = llil‘p, =30, follows:

& .
[ 30] =5, = the set of primes {2,3,5}, so that

~ g
2 = ﬂ] =15, = {2,22,23,2.4,2.5,2.6,2.7,2.8,2.9,2.10,2.11,2.12,2.13,2.14,2.15},

Dennis Lee



=7 = -{_214,6,8,10,12.14,16,i8,20,22,24,26,2&30}. with 15 components.

30 | i !
3= --3‘ =10, = 43,3.3,3.5,3.7,3.9;,
B A ES {3,9,15,2[,27}, with 5 components.

5=y F?O]’ =6, = 15.5.5)
=5 = {5,25}, with 2 components.

‘The total number of composites (plus 1), is then given by I](r): 154542 =22, minus the
three generating primes = 22 -3 =19, and plus 1, for the listed value I, = 19+1=20. And
since 30-20=10, = the set of ten prime values <30 is, {2,3,5,7,11,13,17,19,23,29}. For
(subsequently) larger values, caleulation of the prime-product lists wrt cach prime p,, can begin

with the maximum value of the lists earlier generated.

Dennis Lee
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Section 4

The Goldbach-Lee Theorem

Theorem

Forall n:neN., the list of p, +q, =2n, p,,q, €N, ieN, always contains at least one prime
pair, p,.q, € P, such that p, +¢, =2n, k=1, cvery even number >4 can be written as the

sum of two primes, and every even number 2 6, can be written as the sum of two odd primes.

The proot 1s demonstrated by construction of the list of prime values <27 and the list
of each respective residue summing to 2n, followed by assumption of a hypothesis, and
subsequent contradiction.

Consider an arbitrary value 2n, ne N, and the sect of primes P in canonical
ascendance; p, eP;, p=2, P, =3, Py =5 .0 25 B2 21,
then 3 values g, eN_;, Vi

1si<r<2nm 3<gq,<2n: r counts the pair sums, and p, +¢, =2n, neN_,.

The possible values of the related pairs p, and ¢,. are displayed in the l'able below, in

general form. The (even) pair (pl .q, ), is included in the Table, for clarity.

Index Values r | List of Primes p, | Prime/Composite ¢,
1 Bi=2 g, =2n-2 (q, even)
2 B =3 g, =2n-3
3 Py =5 gy =2n-3
! p,=2n-g, q,=2n-p,
Pl }?r—[ = 2” - (l]r—l qr—-i = 2” - .(Dr—l
4 p.=2n-gq, q, =2n-p,

The values in list ¢, € N_,, can be of any of three forms:

1. All primes
1. Mixture of primes and composites
i1, All composites

Dennis Lee
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We shall proceed via assuming that the list does not contain a prime, and seek a
contradiction, whence the list must contain at least one prime ¢, say, thereby forming at least
one pair of primes (pk,qk ): Pi-qd, €P, p, +q, =2n, orone coinciding ptime p, =¢,.

If the list of values g, does not contain a prime, then the list must all be composite. Since
they are all composite and < 27, then by the definition and properties of primality, each of them

is divisible by at least one of the primes Py s Pi,»---+ Py - In ascendance, the serics of primes that
.. [~ |8
divide 2n, p, €P,such that p, |2n and Py < [\/Zfz] .

Consider now, any prime p,: Pi, <Py <2n so that in particular, p, #p,,
: 1 s
Vie {I,E,,..,m;. We know 3 at least one such p,: n<p, <2n, by Bertrands Postulate

proven by Chebyshev, that for any integer # >3, there is always at least one prime p , between

- > V@ 3 [\/ﬂ} then

n and 2n—2 [1]. Equivalently, noting that for n > 8, we always have

]

the corresponding bound can be writtenas p, 1 2 < p, <n.

The respective related composite of the prime p,, is given as q, =2n—p,.

But since g, is composite and < 2, then at least one of the primes P 1 Pryses Py s
dividing 2n, must also divide g,. We shall label a prime dividing g,, as Py, » s0 that we must
always have

P |27 and p, (g, =2n-p,)

But then the statements imply that p, | p,, which, by the definition of primality, is true
if and only if p, = p,. Iowever, Py = Py, contradicts the statement p, > p, 2 p, . Noting
also that if p, is composite, then this contradicts the primality of the Bertrands
Postulate -derived prime p, .

Hence the (dual) contradiction indicates that our original assumption is in error, and thus,

not all of the g, arc composite.

FHence at least one of the list of divisors ¢,, must be prime, and thus forall n:neN.,
the list of p,+q, =2n, ne N, always contains at least one prime pair, p,.q, € P

: Py +q, =2n. Noting also that 2+2 =4, and 3+3 =6, then cvety even number > 4, can be
written as the sum of two primes, and every even number 2 6, can be written as the sum of two

odd primes.
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Section 5

The Twin Prime Theorem

Theorem

There exist an infinite number of paits of successive odd integers p and p+2, p,(p+2)eZ,
such that p, (p + 2) € [P, the set of ptimes in canonical ascendance.

The proof is demonstrated by construction of Noetherian modules, (Appendix A, page
10), followed by assumption of a finite number of twin primes, and contradiction.

Proot methodology is similar to the generaton of primes by way of the Sieve of
[iratosthenes. The methodology developed by Eratosthenes of Cyrene (276~194 BC), a Greck
mathematician, consists of writing-down the positive integers, from 2, to some (finite) value ,
in their natural ascending order, and then systematically removing all the multiples (thus
composites) of the primes p < Jn [1]. Those integers remaining in the list are determined to
have been ‘sieved’, and are subsequently primes.

Given that the square root of 100, equals 10, an Eratosthenian sicve of the first 100
positive integers is shown below, in which cach prime has been emboldened, and composites

<100, have been marked in the following manner:

Divisible by: 2= (removed) c =S i T=h

2 | 3 5 7 %

11 13 - 17 19
o 23 % = 29

- 3l 3 3y 37 -4
41 43 4+ 47 vl
=5 53 E3 =57 59
61 > o 67 -5
71 73 e w 79
- 83 & - 89
A 9% OF 97 59

23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,

O
e8]

Thus the values 2, 3, 5, 7, 11, 13, 17, 19,

71, 73, 79, 83, 89, and 97, are the primes <100. In particular, the list of twin primes <100

can then be seen to be

(3,5),(5,7),(11,13),(17,19),(29,31),(41,43),(59,61),(71,73).
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We now consider, the module of 30 units, denoted module,;, or more concisely, M,

formed in Section 2, page 14, and shown below, which we use as a measure.

LI LT T T T A I T T M T T [T 11 P9

The M, describes 8  primes, {7,1 1,13, 17,189.23.29. (3)1}, of which three pairs,
{(l LIZ) (17,19), (29(3)!)}, are twin primes. [t is partitioned by the (prime) values 2, 3, and 5,
and their multiples < 30. The value (3)1 is also indicated by a shaded square, in the position of 1
unit.

Concatenation of # of the My, implies that any value g € N, can be formed from a
multiple of r of the M, plus a residue 5:0<5<30, seN". That is, the division algorithm
q=30r+s, for any value ¢ (Appendix A, page 2) [1]. Thus the value ¢ can be addressed by r
of the M, plus a non-negative integer residue <30, contained in the M 3p» i the manner of

the Table shown below.

], = i — 30 | Modules of 30 units
712 = 31 > &0
. ' 61 — 90

o= (r=1)30+1 = r30

The values in this Table correspond to the values in Appendix D, Table, column (a), and column
(b). That is, any value x:xe [(?"—I).30-€-1,F.30] can be found in the #” row of the M,,,
r =N. In particular, this means tha, any Z*-addressed M, in the manner of that shown in
the Table above, contains 2 maximum of two pairs of twin primes in the columns beneath the
values (] 1,13), and (]7,19), plus a third twin prime in the columns beneath (29,(3)1), which

includes the fitst clement (in the column corresponding to the value 1) of the following row.

We can then attach to each module row (and first component of the nest row), an

indication as to the presence of the potential twin primes, 30/(4—{(1 1,13).(17.19), (29, (3)1)},
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ket We do this through construction of the I'win Prime Indicator mod,, (TPL,), (*.* %)
L ( ; . p . . ) . .

for *e 10,1}, or equivalently, i, for visual clarity, in which cach vertical strut is either present,
or omitted. The lefimost indicator implies the values (I | and/or 13), the centre indicator implies

the values (17 and/or 19), and the rightmost indicator implies the values (29 and/or (3)1). and

we respect the position of the value (3)1, and its corresponding indicator.

Thus we have the TP, of form (1, 1, l), ot I—,—J :

When any one of the values in {(] 1, 13), (l 7,19), (29, (3)'1)}, is removed, thus removing any
possibility of presence of a corresponding TP, the TPI,, is modified as betng removed. Thus we
have the eight TPTs,, detailed below in both numerical form, and as a visual aid. In this work, in

order to furnish expediency of communication, we will be relying upon the visual form:

(1,1,1) w All TPIs,, present (shortened in this work to —)

(0,1,1) 4 TPIs,, (11 and/or 13) removed

(1,0,1) L1 TPIs, (17 and/or 19) removed

(0,0,1) —  TPIsy, (11 and/or 13), and (17 and/or 19), removed

(1,1,0) W TPIs,, (29 and/or (3)1) removed

(0,1,0) 4 IPLs,, ({1 and/or 13), and (29 and/or (3)1) removed

(1,0,0) L IPls,, (17 and/or 19), and (29 and/or (3)1) removed

(0,0,0) > Omitted TPIsy, (11 and/or 13), (17 and/or 19),and (29 and/or (3)I)

Or mote concisely,

[ L el L L L > | corresponding to
1 J 5

{(LLY), (0,1,0), (1,0.1), (0.0.1). (1,1,0), (0,1,0), (1,0,0), (0,0,0) }

The operation of intersection (ﬂ) on ‘I'Pls,, follows precisely, the Boolean operation of

Togical and’, (/\), so that for instance,
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(LLDN Loy = (LA 1L0)=(L0,1) or — N =1
(0.L)N(0,.L0) = (0,11 A (0.1,0)=(0,1.0) or N L =1
(0.1,0)N (1,0,0) = (0,1,0) A (1.0,0)= (0,0.0) or L N L= =<

We now form a module of the M;,. Consider each prime module, M o of My
denoted M, 5y, comprising p, rows of My, p, € P, in which the first (prime) value in each

M, 9, is the value p, in the upper bounded rectangles shown in Appendix D, Table, (d), (g),
@), () (&), 1, (m), ().

Congruence modulo 7 is an equivalence relation, and so defines a partition of the set of
integers, where two integers are in the same class iff they are congruent modulo #. The classes
are residucs or congruence classes modulo 7. Two integers are in the same class if they have the

2)...,n=1} [1]. In

same remainder upon division by a. The residue classes are usually {[0], [1], [H],...,
this work, the ficld of operation is {[2}, [3],...,[30], [(3)[]} Thus, since ged(p,,30)=1, i>3,

then the multiples of p, in M, .., are congruent to (ﬂ.p‘_)mOdSO, which is thus soluble

Ppi <3¢
(Appendix A, page 4), and the 30 clements are partiioned as 7 = {(3)1, /0 T 29,30}.

For p, =7, the M o =My, of My, given as M, 4, below, is seven rows of modules

of 30 units, with first value 7, and subsequent multiples of 7, removed.

1 ! 1 - Tl 14 29 28 [,, —
— L1
2] 3| 5| 12 {19 ] 28
— L
_3 | 61 3|10 47| 24
— LL.
4 = 31| 8|15 |22 | 20§
—_ 1
Sl )78 8| 13| 20 27 ==
6151 | T | 4] 11 ] 18|25 =
7l )T | 2| sl |23l30f —

[ere, we display only those values which are removed mod p,, as multiples of the prime p,,
and recall that we are examining the Twin Primes, which are shaded light grey. The positions of

the two, possible primes, 7 and 23, which are not twin primes, are shaded dark grey. Also, the
value congruent mod30, to p,z, here 72 =49, is 19 = 49mod 30, which is indicated by a small

emboldened square.

Thus when a product of p, in the modulesy, is equal modp,, to any of

{I 13,17, 19,29, (3)1 } we modify the corresponding TPI,,. Without modification, the M, ,, is
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given by seven rows of the values (3)1 ~ 30 portrayed in line 24, and 1s indicated by the 'TPI,, —,
in the third column of the Table above.

Now modifying the modulep4 =M,, through removal of the products of p, =7,
implies the IPI;, modifications shown in the final column of the Table above. Note that the
value (3)1 in line 4, acts to modify the final 'I'Ply, in the previous line, line 3, and not in its
current line, line 4. Hence although the value 1 appears in row 4, the deletion corresponding to
(3)1 =, | takes place in row 3.

We can then concatenate the set of seven rows, to form a list of as many rows as we like.
Note that rows one and seven of the M, ;, remain unmodified, whilst rows two to six, become
modified.

Unmodified rows, indicated in column 3 of the Table above, in a list of M, 4, then
correspond to rows {1,7}+7n for n €Z,, at rows {1,7,8,14,15,....7n,7n+ ...} neN" Since
each M, 5, in a list of #» modules of modules,, possesses precisely the same TPI,, structure,
then the removal or deletion of the multples of p, =7 implies a list of concatenated rows of

seven TPIs,, corresponding to the (transpose) series

{ —_ L — L L e - }, or its equivalent form,

(LD, (10,1),(,0,0), (1,1,0), (0,11, (0.L1), (LL1) )

Using the same methodology, we can form M, 5, for ecach p, € P, i 24 (since the
smaller primes 2,3,5, have already been used in the construction of the M,,). These M %30
correspond to the columns of M p30» Shown in Appendix D, Table, (d), (g), (1), (), (k), (), (m),
(n), for p, =7,11,13,17,19,23,29,31, respecdvely.

Each column list of M, 4, for each i €Z.;, corresponds to the removal of multiples of
each p, €P, ieZ., Thus we now need to be in a position to remove the multiples of cach
prime, In succession, in their natural order. This will have the effect of removing all of the

multiples of p, =7, then the muldples of p, =11, followed by the multiples of p, =13, to use
of any chosen value of p, € P, ieZ .. This is in the same vein as the removal of multples, in

the methodology of the Sieve of Eratosthenes.
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Now, the sct Z of integers form a Noctherian Z-module (Appendix A, page 10), so we
can choose any value n e Z" with which to assess the state of the associated list of TPls,,, and we
can be assured that the associated number of clements is finite.

We can now begin the proof by way of contradicton.

Proof

Assume that there exists only a finite number of twin primes, and suppose the last twin
prime (or set of twin primes if more than one is removed through deletion by the largest
respective single prime) is/are removed following division, (so removal of the multiple of a
prime), by a prime p, P, geZ.,

Then, since the initial module M, , of My, M, ., begins with the value P its

[ - g -
corresponding TPTy, is given by ><, and the TPIs;, for all values > p .+ Are composite, so are

also given by <.

Hence, noting that for 2 31, each module is always only a single element wide. each
3 é—_y 4 J J o 3

row of the initial M px300 Py > 31, to cach (pq) , 1s composite, so contains no twin primes.

Thus, cach row of the M, 5, from row 1, to row p,_, have had their twin primes
53

removed, so that all of the TPIs;, from row 1, to row p,, are removed, and so can be marked as
><.

But this can never happen.

To sce this, recall that initially the TPIs;, are unmodified, and all (potential) twin primes
are present prior to removal of a prime and its multiples.

Considering the first M, 5, p, =7—module, of M;,, M, s, then the maximum
number of twin primes able to be removed from the module is 6, since only a maximum of 6
elements can exist in the set of residue classes available for removal or deletion, through division,
as  multiples of the prme p,= 7. These are precisely the components
{[Gu ks [z} [19) [29]}

However, removal of the 6 components cannot take place until component removal in
the p; =11-module, of M,,, M, ,,. This is because, for p, 231, only two at most, of the
TPIs,, components can be removed or deleted in any row of any specific module, and a
minimum of 3 TPIs;, are required to be deleted, in order to describe modification by way of

complete TPIs,, removal.
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of modified and removed TPls,, denoted (6), modified but not deleted denoted (E;l and

unmodified TPls,, denoted in standard manner as # €N, 1s detailed in the table below.

m | 2 3 3 8 # 8 5 6 7
6m 6 12 12 18 18 24 30 30 36 42
Prime Module | 7 11 13 17 19 23 29 31 37 4]
6 6 6 6 6 6 6 6 6 6
1 5 6 6 6 6 6 6 6 6
1 5 6 6 6 6 6 6
5 6 6 6 6
5 7 6 6
7

e
[

In respect of TPs at every pair, 6k 1, k=Z", or at some pairs 6m =1, m eZ’, there
will always exist free, unmodified TPIsy, wrt evety prime module M sxan B = 7, and.-hence

the number of TPIs,

M

o In any module, will never be depleted.

Hence we can never have all of the TPIs,, deleted or removed, in any M , 5, which is

our required contradiction.
Thus our original assumption must be in error, and there is not last twin prime.

And hence, there exists an infinite number of twin primes found as pairs of successive
odd integers p and p+2, for p,p+2€Z’, p,p+2€ P, the set of primes in canonical

ascendance.
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Section 6

Computing Primes

Since, when scarching for primes, more than one can be found in a single test, it becomes evident
that a polynomial solution could be applicd in respect of solvation for a finite number of
responses. Paying due respect to the Abel-Ruffini theorem, and the Law of Universality of the
algorithm, we are forced to accept that, (for calculation of more than 5 solution primes),
numerical calculation is likely to be necessary.

Considering the dual pairs [ p, —@,a} of the Folded Number (EN) FN{Tp, | it is

; i
well-known that we can test the components, using the greatest common denominator
(gcd(*,*)) function, in order to determine whether the pair are relatively prime (RP), whence
gcd(l:l 2, —a,af}: 1, or whether there exists a common divisor gcd([f[ P, —0:,65)=05k, such
that & 2 ¢, > 1. The process involved in such a caleulation, follows the methodology of solution
detivation by way of the Euclidean Algorithm (EA) [1]. Basically the process consists of the

tepeated subtraction of @, from I p,, until the result (equal to @, say), is such that 1< o 1A e
[

this is followed by the repetition of the residue calculation, using the calculated component ¢,
and the initial value @, to generate &,. The next calculation generates the residue a,, trom the
repeated calculation of @, minus ¢, and so forth, untl we reach the value 1, whence the initial
pair LI'I e —O:,(I), are RP, or we reach the value ¢, : l< @, <a, |, for maximum value of £,
tor which gcd([{l P—a 2 J: &;. Where we begin the process with values formed entirely from
as yet undeclared primes, then the result gcd(\IJI b, —0, 6 ): I, will describe a new prime, and the

result gcd(ﬂp, —a,(x)zak. for @z a, >1, will describe a product of as yet undeclared
i

primes.

Conducting the lengthy caleulation of Il p,, and subsequent construction of the
!

numerical value of length 2 10° digits, is 2 time-consuming process, which can be improved

upon via rewriting |1 By — ket using an adapted form of the HA. Also, rather than continually
!
subtracting the value @ from 11 p,, and generation of the subsequent residue, we can speed-up
!
the process, via caleulation and storage of -{2,3,...,8,9} times ¢, and subsequent subtraction

from I1p,, and the returned residue of g,ax 10", in which g, is the digit value closest to the
!
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leading 7 digits of @ and the @ —residue, and s is the number of zeros required in order to pad
out the summand. In this way, we would require (excluding calculation of the eight products) as
many subtraction calculations as there ate number of digits in the queried value.

Caleulation of primes in this manner implies difficulties with respect to storage, of the
large numbets involved, Ll Ip, ) which are currently of the order of a single prime being 10"

,

digits long. [However, it cannot be disputed that calculation, in principle, in the sense of a Zeusian
computer, (able to complete a calculation immediately), might be made available. For example,
the Chinese Remainder Theorem delivers larger solutions than is the case without the theorem,
and we, unaided as humans, can provide solutions for much smaller calculadons.

A more direct approach, linking empirical computing, and Zeusian calculation, is
forwarded by way of I'actorial Prime Representation (FPR), I1p,. and its constrained set of

,

divisible and non-divisible factors. The I'PR delivers calculation as to primality, using two values
only, and the result of their calculation of relative primality. Where the calculation is conducted
cmpirically, there exists a set (region) of solutions in which any calculated (suitable) FPR solution,
Is prime.

Described in short, the FPR allows calculation of definitive primes, and investigation of
primality, via calculation of the relative primality of two values only; this is vastly more speedy
than any divisibility algorithm using all of the (suitable) available primes. Current technology
supports the calculation of values containing around 10" digits, with the only issues being those
of storage of the list of (earlier calculated) primes, and the time of calculation. Pre-storage of the
consecutive list of primes allows calculation of FPR A residues of maximum length no longer

than that of the digits of the largest prime divisor of the I1 p,. This allows extension of

calculation to (very) large primes; much larger than are calculated using current techniques. Prizes
s . . . .. ; 4 5 &

are offered currently, for new primes with digits numbering 10, 10°, and 10 digits.

A related algorithm  can  be secen to  be  accessible, via the I'PR
[Tp,=235711.13.17.19.23, and the (prime) value 61, (since 6l<\zf1p,, and can be
! i

viewed as being ‘much’ larger than the maximum p, of 23 for example). We would then be
intetested in the solution to the queston ‘does 61|11 p,, which conceptually, is tested via
i
continuous calculation of I1 p, —6lk n for various values of & 54 and subscquent application of
¥

the EA described on page 32.
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In respect of the numerical example described, we would be investigating whether

lp =61k, =0, or Il p, =61k, >0. Where the caleulation equals zero, then 61 contains at
i ! i

least one factor in Il p,, greater than I, so 61 cannot be prime. Otherwise, 61 is prime, or
!

formed from a product of ptimes, cach larger than the maximum p, of 23.
Such solvation requires further investigation, and payment of duc respect to the

magnitude of the final component of the FPR list wrt the FN representation (Appendix B) of our

example value of 61,

o] e
T T

such that the FN(6I) = that ap, fp = p|6l, and ged(e, B)=1; Le, p is the largest
possible prime divisor of 61, the latter of which is therefore not a prime, unless p =61 (since
p =Zl is excluded).

The calculation gcd(ﬂ p,,a), is achieved in the following manner, beginning

. P s |8 - s = .
with p, = {V’ oc} , the largest prime < p, = [Nfcc} , for ["‘]‘L the greatest integer function:
Considering gt(:): ITp, — Kex, then choosing any factor, or list of factors Q =11p,
! q

say, such that Il p, = Q1 p ,

i /

then we can remove () through use of K =11p, +M,
/

via I,".[pI w(ljlpl +Mf)a:f’1p, - Ka
\
= Ol p, _[]TfI p,+ Mjaf,
= (©-a)llp, - Ma,
= Ylfjpf -Mea, for ¥ [;[ p, s Mea,

We can rewrite this solution as g, (:) =11 p, — Ma, and iterate the process, beginning at

linc 71, until all of the factors have been used, and the residue gencerated is given by g, (:)
Following this iterative procedure, and depletion, in any order, of the list of canonically aligned

primes, the solution ged can be found via ngUI P, ,a): gcd(g” (: ), a').
!
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Calculation of primality through use of the multiplication of individual primes, rather
than their division into a single valuc, implics a process utilising simpler caleulation, and much
less dynamic and passive storage space. Its usefulness is limited to verification of primality, or
calculation of a single prime from a product of primes, for large values known to be an unknown
prime, or known to be a product of unknown primes.

Fach calculation residue gencrated can be positive or negative, so that, for example,
| e 5 ;
-60l< <6l < |ﬁ' <6l = W6l =7, then 6l=> 11Ip4 =2.3.5.7. Here we consider the
following example, in which, in order to provide clarification of operation, the list of primes
utilised is six primes longer than necessary.

The caleulation  ged(([T p, =2.3.5.7.11.13.17.19.23 = 223092870 61]  follows, in

9

which those values in round brackets are for calculation, and those contained in square brackets
* for faf : i
are ror nrormation only.

From 2.3.5.7.11.13.17.19.23, and k.61, for suitable values of k €Z,

[2.5.7.11.13.17.19](3.23 - 1.61) = [2.5.7.11.13.17.19](8),

= [5.11.13.17.19](2.7.8~ 1.61) = [5.11.13.17.19}(51), or (-10])
=5 [5.10.13.17](19.51-15.61) = [5.11.13.17}(54). or (-7))

=5 [5.11.13}(17.54-15.61) = [5.11.13](3),

= [13](3.5.11-2.61)= [13}(43), or (~18))

= (13.43-9.61)=[13](10),

)

and since all priﬁcs in 2.3.5.7.11.13.17.19.23, have been used, and 10 <61, then the larger

and ged(10,61) = (-1

value 61 is prime. Alternatively, if the final gcd(*,*) 15 > |, then it is a factor of the initially
examined value 61, which will require verification as to its ptime, or composite nature,
iteratively, in the manner described.

It has earlter been demonstrated in the Lee-Prime Theorem, Section 2, page 16, that at
least one new prime, greater than a latgest given prime, can be secured, and made available for
computation in the manner described in this secgon. Thus the gcd(*,*) calculation of very large
values, (relative to the largest generating prime), can be conducted through use of much smaller,
related primes. In April 2014, the largest prime computed contained 17,425,170 digits.

Computation of the 17,425,170 digit value in the fashion described in this section, would require
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largest digit prime numbers of the order of 5,000 digits, dynamic memory capacity for
calculation of the associated products, of the order of around 10,000,000 - to — 100,000,000
digits, and a dedicated area of memory able to calculate the residues of
10,000,000 — to — 100,000,000 digit value subtractions.

An alternative approach to verification of primality wrt a value C €N say, which is either
of, an unknown prime, or a product of unknown primes, can be scen to be satisfied via
verfication or otherwise, of the composite nature of the given source value C. General testing of

primes of the form C, will be seen to be reduced to iterative addition of sequental values

£ eN, modulo C, and is thus much faster than conventional methods of calculation.

0 [ 1 Z =2 m—1 m m+1 el el m
r;r[ t‘:—l Cl _fﬁl]_’_ (_‘:l+ Cl _(_;r_l__’_ C=-21C-1|C L'__j—_l__i_m
+0 | +1 | +2

m-—2 1 — m m+1
‘2*' (3*— (2" C—r=2|C—r—-1| €—r | C=r+1 C=21C-1|Cl C-r
r-(r+1)

= = & r+2 r+1 ¥ r—1 2 1 0 7
tl ;7! % (z—i_ 1'2-_1_ cz-[_ _(_zm_l_ 2 ] 0 ('24_”2
~0 =1 —g m—2 m—1 m m+ 1
((;:)2 ((1—1)~ ((3—5)2 (r+2)] (r+1)2 2 ( __1)2 52 12 0? 52

1

C=2 C=4 C—6| -] 2r+3 2r+1 2r—1 2r—3 3 1 -1 2r—1

C C=21 C—4] | 2r+5 2r+3 | 2r+1 2r—1 | 5 3 1 § 2r+1

\
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[n order to begin this process, we can first note from the Table above, some of the
fundamental relationships of values contained in any FIN row expansion:
The Table entries have been generated wrt the I'N (7, and its count of individual terms in respect
of r, and its mirror value C'—r, in terms of the pairs (= r,#). The number of terms () is
counted In the first row, as m terms counted from the left of the table. The row of values above
O+l

the row of C'~r, describe the value ("'—r, in terms of its value as a count from <, to m

further positive terms, <3+ m. Similarly, the row of values below the row of r, describe the

g

value 7, in terms of its value as a count from ‘5, to m further negative terms, %—’ - m.

The final, and penultimate row of values 2r +1, and 2r — 1, respectively, both provide an

augmented count wrt the row of r. When counted from r=1, the former sums to

”

((r + 1)2 — l)= 2(2}‘ + 1), and the latter sums to 7° = Z(Qr - l). Information as to the values

=l i
F(}" + 1), and 1, in the lower portion of the greyed areas, will be updated in due course.

In order to progress further, we need to consider a composite value C, which can be
factored into two components a, and b, each of which is non-trivial, so that @,b > 1, and RP,
whence gcd(a:b): Ls

Thus we have a, and b, each divide C, written a|C, and &|C, whence by the
property of Linear Diophantine FEquations (ILDIs) [1] we can always find values x, and y, such
that the values ax, and by, differ by a value of 2, so that ax—by=2. The fact that
gcd(a,b) =1, implies that ' is formed from at least two, distinct primes.

But then we also have ax.by = abxy = kC =0modC, for k = xy.

So that W}:i‘ting ax=r+2, and by =r, we must have r(r +2)=kC = 0modC.

But this is equivalent to r(r + I) = (( —r)mod (', the latter of which is contained in the
row of (C”—r). Further, since i‘(}" +2)=kC =0mod(, then adding the value | to both sides,
we have (r+ 1)2 =r(r‘ +2)+1 =kC+1=1modC, so that (r -I-fl)z =|mod(C, the former of
which is in the row of r*. T'he values modulo C, in the row of r*, are the Quadratic Residucs
(Appendix A, page 4). It (' is a prime, then all of the columns of the FN, FN((.Y), are RP. Hence

}"(‘+1), and 7, cannot exist in the same column of a FN, so that we can only have

(i’ +1) =1mod C, when » = 0.
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Now wiiting & =7+1, we must also have r(r+2)= (o =1 ) + 1)=kC =0modC,
150 whence a@” =kC+1, = a’=ImodC. For k a square, the relation takes the form

2 . N £ g -
a—k*C =1, which can be solved, for solutions p=a, ¢g=4k, in the manner of Pell’s
i g) ; " 3 2 2 5
equation, through use of the convergents % of the continued fraction expansion of VO [1].

However, this detracts from the nature of the integer analysis developed in this work.

+

We also state the trivial result here, that m+r = ---‘-;)—A, = 2m+2r+1=C, which =

s

155 2Zm+1=-2rmodC. And since f‘(r +2) =0modC, = r? =-2rmodC, so that we also have

2m+1=r"modC. In addition, substituting (H-m)=r in rr+2)=0 =

m* —m—~A=0modC for suitable values of A€ N, so that m’ —m— A= r(r+2)=0modC.

w —|
We can also note at this poiat, that Z A= m(m + 1), $O that i A= m(m = l).

=l pr
Introducing these relationships into the table above, provide the additional details shown
160 in the greyed areas, via (7 +1)=(C —#)modC, and (r+1) =1modC.
Thus, in order to test as to composite nature of a value containing at least two distinct
prime factors, it is enough to verify that for some lower N row value 7, of the FN C, the

square of the given value, is congruent to 1mod C. further, since all squares generated by values

of 7 smaller than vC, but greater than 1, ate less than C, and thus cannot equal 1mod(, then
2 . = e b
165  the first value » = ImodC, must be > [«/( J ,the largest odd number < [wj(:] . Hence we can

reduce the initial search region to li [\/—E }g” ,( {\/?'"]W + ZJ,([\;’J—(—FJW + 4]‘ ﬁ:’

s 4 ; . - . " 9
We now require a test which deals with powers of a prime p, raised an even power p*”,

2+l

or raised to an odd power p*"™*', neN.

Considering first a prime raised to an even power p°”,
170 then for all kp” < p™ in the FN p™, the value kp" has MF (Section 1, page 4)
2 .
P~ —kp". And squaring kp" generates the value k% p?”.
2n

But then p™" | k% p™, because p™ | p*, which implies that £% p*" = 0mod p*".

2ntl
2

Considering now a prime raised to an odd power p
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then for all kp™' < p™*' in the PN p™™', the value kp™' has ME p*™ —kp"'. And

¥ -1 2 . 2nt2
squating kp"" generates the value &% p™"™.

2n+l 2r12

But  then  p™™'|k’p*™"*,  because

2 “ - .
, which  implies  that

Za+l

2. 2H+2
kp™ =0mod p
However, when p is a prime, then the columns of its FN arc all RP, so possess no
common factor. Hence there does not exist 2 common divisot, so no square will take the value

zeto. Ience, in order to test as to composite nature of a value C, formed from only one prime
factor p, raised to a power g €N, p?, itis enough to verify that for some lower FN row value

r, of the FN C, the square of the given value, is congruent to O mod (.
Now linking the statements for verification of a composite formed from two or more
primes, and a composite formed from a single prime raised to some power, leads to the following

theorem, and test:

Lees Prime Summation Theorem

Given a positive integer p € P,

then the number p is prime if, and only if, Vr:
Fe {NE]W ,([\/};]g‘) + 2}([\/}—?]@ + 4), - ”;}, [\EJ‘Q" the largest odd integer < [\/C_]g

we have #* # 1 mod p, and r*Z 0mod p-

” o0 )—]
If the test fails for any odd value N;}g +nsr= [7 , n= {2,4, 6,..., } then the

number p is composite.

Lees Prime Summation Test

2 | ; " - 5 P ;
Verification as to the primality of p, via the nature of r” modulo p, and I.ees Prime
Summation ‘Theorem, can be provided through summation in ascendance, of the values

{1,3,5,.,.,(21”-1),...,(p— 2)} modulo p, the sum of which can be conducted from the (odd)

— igo \ |z . . . A
value r = [\[ p} , the largest odd integer < [\,f p] . Whence p, ts composite, if for any sub-
.

summaton of the sum (Z (2r — 1) = erlTlOd P, s equal to 0, or 1.

i=|
Thus verification as to primality can be conducted via modular summation only. This is

likely to prove to be a speedy, and efficacious test.
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Section 7

Matrices, and the Prime Matrix

a

c

. o ; . b =

IHere, we consider the general two-dimensional non-singular matrix 4 = b a,bedel’,
¢

and its relation in terms of its similar diagonalised representation using the matrix determinant

D, matrix eigenvalues A=A, for i= {1,2}, A #A,, and matrix eigenvectors

v Vi, ] R _ i L
Vi 2[ ”:|, v, =[ . }, for V' = [V v, ], so that A = b—VﬁV " Writing this relationship in its
Vs

elemental form informs us that,

a b 1 o 1 v VoA O v v,
A= =—VAV = 4
¢ d D ViV = ViV (Vo YV | O A [-va Wy

An accompanying telatonship is provided by the Characteristic Hquation (CEH)
a—A b

=10, reduces to the
c d-A

det(A—M):O, for 7, the identity matrix. The CE dct(

general quadratic equation A —i(a + d)+ (ad —bc)=0, which can be written in terms of the

matrix trace 7, and matrix determinant D, as the Characteristic Polynomial (CP)

T —4D

3 a ; - . iy -
A" = AT + D =0, with characteristic root solutions 4 = —+ ————— [2]. We make use of the

to | ™

solution discriminant 7% —4D, in page 41.

The elemental diagonalised form of the two-dimensional matrix A invites writing of the
vector colummns ¥, and V;, in a form likely to assist analysis. We can write the pair of vector
columns of ¥, and V, respectively, in the following four forms, in which &, and [, are the

eigenvector weights corresponding to the cigenvalues 4, and 4, respectfully:

Lol =l ol el

The simplified form of the clemental diagonalisation generates any of the following

respectfully:
A). e l LA, —ad, Ay /.“‘lﬁ =
B-a|af(—2,) Ph,—oh,
B) _ 1 Ay —afil, /B(Az _j“l)
' l—ap|eld, —2,) A, —aBi, |
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L [apl, -4, ald, -4,
6. a=L [Pk @A)
l—afB| B4 —4,) afd, — 4 |

o) an L [oh=Bh aplh-2)
& (,{#/U /’L]—ﬂug O“’/lz—ﬁ/]u] ]

in which @£ is the cigenvector weight product.

IHowever, it is convenient, and efficient to utlise the vector pair basis V) = —I, ¥ = !J,
& | B

V= [Vi Vs ], so that we are interested in the relationship shown in B, whence

L[ AL ] 2] At Al =4 )|

S R ” "
alll a | ¢ d| l-ap|all -4,) A, -afi,

i |
We can note immediately that b= [J}(/AL2 -4 ), and c:a(ﬂw -4, ), can be zeroed to
b=0, or ¢=0, via =0, or @ =0, respectively. Where necessary, we shall refer to the

, as the anti-trace, denoted by 7. From aff=0 via =0, or

eigenvalue residue (4, — A,

¢ =0, we can see that the trace diagonal then becomes equal to the eigenvalues a =/, and

d =/, respectfully, whence matrix 4 trace a+d =4, +A, =T, and matrix determinant
e Yo 1 7

. . . b
D =1. We can also note that b, and ¢, imply the relationship — = ~w/-))-.
c [94

From the equation of 4 above, we have immediately that b=0, < £=0, = a lower
triangular matrix (I'IM), and ¢ =0, <> « =0, = an upper triangular matrix (UTM). Thus from

the matrix formed from the basis pair of eigenvectors 1, an UI'M basis pair of
174

d
eigenvectors generates an upper triangular design matrix, for which an UTM = another UTM,
and similatly, a L'TM basis pair of eigenvectors generates a lower triangular design matrix, for
which a .TM = another I.TM.

Regarding the matrix components B(4, — 4, ), and a(4, —A,), and the invariant
elgenvector component residue (/11 ~A,), then the importance of the eigenvector component
residue (weight) products @, and [, is ostensibly apparent. The additional invariant residue
(2, = A,), which features in the detived relationship

bel=aB) 4 g =4, -4),
of -
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for the matrix determinant caleulated in line 10, with mattix trace 7=a+d, and matrx
determinant D = ad — be, may be as important and uscful in analysis as the well-known matrix
invariants, D, and 7.

Note that in this work, we are particularly interested in non-zero, integer values of ¢/,
and the corresponding set of solutions wrt the matrix invariant residue 7. Tt is also notable that
the matrix anti-trace components b and ¢, can be described via knowledge of the value of the
product pair @3, and the invariant residue, implying that ¢, £, and/or their product af, may
be important qualities in understanding integer matrix properties.

] Ay —~ G A ﬂ(’"’“z _’)’r)

Examining the right-hand-side of the statement —— , then
; ’ \~ap|ald ~2,) 4, —aph,
rewriting the terms in the matrix, and bringing the constant factor ﬁ into the matrix,
—
()"1“’12)'5'/12(]_&:8) E(’lz‘ih)
: l—ef | —af
delivers the fi .
Clvers tine rorm Gc(ﬂ,!ﬁ,%z) (ﬂzfﬂi)+ﬂ,l(1—aﬁ)
l—opf 1—of
h=2%), ,  Br-%)
which simplifies as b= (:X’U |-ap
a(’ﬁ_"lz) (;bz—j'l)+/1
1
{—af L=f
' - . : . . o (4 —4,)
Now writing the eigenvalue residue per unit determinant distortion, X = 2 the

matrix simplifies further, so that
P b P{mz —BX
c d| [ aX i 3 A Ay
Hence, if an integer factor of the integers A, and A,. say £, also divides X, then matrix 4
g g 1 2> 54)

possesses a general integer factor £, of all matrix terms. We shall term a matrix written in the
X+4, -8B

X — &+

form , without 2 component common factor, as a prime matrix (PM). If

neither of (‘Y-l-/ﬂt: ), or (ﬁ X+ ﬂ,) arc prime, then we term the matrix as a PM of order zero,
denoted PM(0). If only one of (X Foolls ), or (ﬁ X+ /11) arc ptime, then we term the matrix as a
PM of order one, denoted PM(1). And if both (X + 4,), and (~x+ 2,) are prime, then we term

the matrix as a PM of order two, denoted PM(2).
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Considering now a positive ot neeative variation in one, or both, of the cieenvalues, the
O Pe) k] 5 3

effect of the change on the matrix trace, determinant, and anii-trace, is indicated in the Table

below, in which: 7} indicates the change in terms of the trace relationship A4, + A4, and 7,

indicates the change in terms of the anti-trace relationship A4, —AA4,.

A4, A4, AT AD AT
% ¥+ 7 A AL, + A,A4 T
% — T — A4 AA, + 4,A4, T,
_ + e 4, ~ A A0 ~T,
~ _ T, A Ady~ TN, | =L
3 0 A, 2,A0, AL,
0 + A4, A A, —AA,
_ — A4 — LAJ, ]
0 - Ay — i A,

Here, we consider the PM, in respect of a fixed trace and determinant, and unit changes in the

2 2
weight components @ and [, wtt the initial matrix l:] 3}, in row A.

Al A« | B | af | Original | PM Form A
Matrix
Ald4 11 |-2]-2] [22 ](cuz.] -2(-3)] [6 6
L3 [’ 1B 1+24 ] *3 9 Datum
Bl4 |12 -2-4|Ty %| | [4+41 -2(-3)] [8 6 DD
W %y 5Lz.(s) 1+44 |76 17 uu
Cla |1 |1 |=1]=-1]|1T% % 4+1.1 -163)] [5 3 ub
v % %l 1PL1B) 1+14 | 3 5 UD
dl4]1]0]=-2]0 4 6 [4-0 -2(=3)] [4 6 Uu
D {0 1 ToB) 1-0 | Mo 1 D D
D4 | 1]-1|-2]2[-2 -6]| [4-21 -2(-3)] [2 6]|DD
D 3 7J Uwtfs) 1e24 |T Yes =7/ g u
El4 |1 ] 1 —D:% -3 [z g} Ermi —3.(—3))}:{7 9] DU
o) o} 4 a
s 141 1(_)) 1+3.4 ) lJ_j DU
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Note in row d, the inclusion of an original matrix entry of zero, generated via a reduction in o,
of 1, and its closest relationship in row 1D, due to a reduction in &, of 2. The final colum
indicates the increase (U) or decrease (D) generated wrt the original matrix, and its subscquently
produced PM form. Only those matrices in rows A, and D, are PMs, with both being PM(2).

Since the matrix entry values a,b,¢,d, exclude the value zero, then there are precisely 15
other dedicated forms of response, some of which may be repeated in terms of unit (or 2 units,
since the value 0 is excluded) increase or decrease of each of the four components,
corresponding to the four regions (+x,+ ), (+x,— ) (— X, + ), (— x,—y). The 16 different
general locations can be counted as the sum of those locatdons with no negative values, onc
tegative value, two negative values, three negative values, and four negative values respectively,
YO HIC A CHC, S 1+416+4+1=16.

Investigative analysis can proceed via equating 7 :1<r <4 of the 4 matrix options, or
via equating any of the components to a prime, or a product of primes. Further, noting that for
P prime, p=A, —afii,, we have (1 ~aff)t p=(4 —apfl,). unless (I ~af})=%p, whence
aff =1+ p). peP. This is similar to the case for p composite, cxcept that (l—aﬂ) also
divides p = (FL, —afid, ), for at least two values: — p < (l —af)< p, afi#1. The set of PM-
viable integer matrix ecntrics, forwards the set of ordered integer  quadruples  of

e { ((z,b,c,d), a,b,c,d el } from which we can produce the PM-applicable functions

Tid & =

X X , .
X ES——y g, =44, 1, l—’l, = -{l 2,3,4}, X =a,%x,=b,x;=c¢,x,=d, paprime,
q,p r)

which describes the sct of composite PMs with entries x, = ¢, pk,, k, €2, in which three of the

4,, at most, can be equal to 1, and

i It T
X . g \ ,
%y B ; i=,2,3,4; x,=a,x, =b,x;=c, x, =d, p aptime,

which describes the set of prime PMs with eatries x, = pk,, k, €Z.
Thus the PM is able to discern between scts of four composites, and sets of four relatively prime

components.
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For fractional aff :aff = . n =N, matrix generation using an initdal I'N pair as the initial
n+1

trace valuc 4, +4,, is an automorphic function (Appendix A, page 6) into the set of I'N pairs

corresponding to the initial FN pair (Appendix B). For example, from 35, =

rlo 1] 2
A, 18] 19| 20 ()+1
A f17 L ie ] 1s (-1
1 ) B}
s '1'2% 18+n —1P
105 and 4, =18, 4, =17, = = \
? 4 1§ lo 17-n
1-af |- af |
Mg -1 19 —241
we have 9 =5 # 4 l = . A
1 o 17 2 2a 16J
2 [20 -3 3 21 -3
i =N ; = = ,
3 30 15 4 3 14

and in general,
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Section 8

Quantum Space

Mathematical Physics provides for a description of a coordinate system with space co-ordinates
(x, y,z)e R®, and time 1, suppotting a space-time diagram via the 4 —dimensional system
(x,y,z,r). Utlising the 4 —component system, we can examine an arbitrary space component
A, in respect of the quantum nature of space.

The (naive) spatial position 4 = (x, _1',:)A‘ coupled with time £, 1s termed an event. It is
required to support the location of mass, or energy, of unknown quantitics. The nature of mass
and/or energy, implies that the respective position A4 =(x, V. :,l) is not an isolated point,
implying its continuity. The paths of particles or cnergy in a space-time diagram are termed
space-time curves, or world-lines. In this brief, we consider the spatial coordinate of the
two-dimensional system (x: t), in which the x —axis is usually the horizontal axis.

Consideration of the wave nature of particles, implies that there exists a fundamental limit
to the knowledge of the energy of a particle when it is measured for a finite time. This is one
facet of the Heisenberg Uncertainty Principle (IHTUP); the other being the uncertainty of precision
of a particle’s position coordinate, and its momentum. In both statements, the product of the
uncertainties in the cortesponding measurements of each, must be > %, Planck’s constant A,
normalised by 27. Thus, HUP, and the nature of mass and energy, support the principle of a
(suitably large) finite, or infinite, number of smears of mass or energy, at any spatial position A4.
In this brief, we imply that the number of smears of mass or energy in the quantum space state, is
> 8.

"The relationship between the quantum nature of space, and that of any smears of dual
located mass or energy, and considerations of the operation or function of dual physical
constructs in space, supporting the existence of a non-isolated point, implies the minimisation
and stability, of mass or cnergy, at spatial points of resonance, where such can be found.

In order to demonstrate the relationship between the quantum nature of space, and the

uantum nature of the physical world, we require the followine statement:
) > ] o)

Lee’s Equation

‘The triple implication

(x+_v)= (z+c)

— <

Q(xy—:c): e’ == x*+y?
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is true Vx,v,z,¢c € N, such that x, v,z support a Pythagorean triangle x>+ _\,’3 =t G

The proof proceeds by construction.

Consider the casc

dx,y,z,ce N: (.r+y):(s+c) 1
. (x+y) =(z+c)
= Z(x_),/—:'.c):-:2 _xz_yz +e?, 2
so that using Proof by Cases, =

X+yt= e ¢ =20y-zc) 3

Now, working in another direction in order to provide a triangular

implication from

¢* = 2(xy - zc), 4
= ¢ +2zc-2xy = 0.
Solving the quadratic in '¢'
= c=—z+./z" +2xy, B
< Z+c=%z" +2xp.
Squaring
= (z 2 c)2 =z% +2xy, 0
and completing the square
e (-:-I—c‘)2 —(x+y)2 410 ¢yt =t
So that again, using Proof by Cases
< | (x+y)=(:+c) & X+yt=z 7
Also, for all Pythagorean triangles %= yz =z, x,v,z,¢c € N, then
X +yt=z & (x—f-y)z —2xy= (z +c)2 —2z¢—c?,
s0 that Proof by Cases =
(x + _V)2 = (: + c)2 & gl= Z(xy = :c). 8

‘Thus, combining the implications provides that

(x+y)=(z+¢)

Q(xy - ZC) =p° p— x* qop
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as required.

Returning now to the physical, spatial analogy, an arbitrary point a, along the x — axis,
can describe any value a € R, and thus supportts the co-existing, corresponding 2 — pattition

element @ =(x+y)=(z+c), in which all of the components operate along the x —axis, and
a,x,y,z,¢ € R. This implies that a result generated through application of Lee’s Equation, may

be applicable throughout the (stable) domains of space, mass, and energy.

In general Physics, an orbital is defined to be the space-dependent part of a wavefunction
for an electron in an atom. The wavefunction is a probalistic function dealing with describing the
location of an electron in a particular region surrounding the atomic nucleus. It is specified
through the use of four quantum numbers; the principal quantum number 7, the orbital angular

momentum number /, the magnetic angular momentum number m,, and the magnetic spin

number m . There are up to n of the [, 2/ +1 of the m,, and 2 of the m_ . The state of any
clectron is then given through defining its orbitals, subject to the Pauli Exclusion Principle
(PEP), which governs the manner in which electrons can fill the available orbitals. For particular
values of /, and m,, solutions of the wavefunction described by the Schrédinger Equation, are
well-behaved only when the energy is quantized, implying an integer value of 7.

One result generated through application of Lee’s Equation, deals with the generation of

stable regions of space corresponding to stable regions of mass or energy. In order to see this, we

first need to rewrite the relationship ¢t = 2(xy - zc) from Lee’s Equation, in a suitable form, so

that
%:(xy—zc), 9
¢’ c(c+22)
= XY S——F I =Nl
2 2
55, 3y = ¢(2¢ +222 —c) _ c(Z(x +2y)—c)’
c2
< xy=c(x+y)——, 10
2ey-c’
= X(_,V—C)=—2‘*,
B c(2y~2c+c)

@ O
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This equation, which supports the generation of all Pythagorean triangles, and = x,y,z,c e N,

2
takes integer solutions precisely when (y— C) is a positive factor of C%.
Noting first that ¢ is necessarily cven, we can construct the following table, in which

2
c%zan, and /(xy —z¢) = ny/2.

nle ¢ C% \ﬁ[c— 2 Factors Factor No. Shell
1 |2 4 2 V2 1,2 2 K
2 14 16 8 22 1,2,4,8 4 L
3 16 36 18 32 1,2,3,6,9,18 6 M
4 {8 64 32 42 1,2.4.8. 16,32 6 N
5 |10 100 50 542 1,2, 5,10, 25, 50 6 O
6 |12 144 72 62 1,2,3,4,6,8 9,12, 18, 24, 36, 72 12 p
7 |14 196 98 72 1,2,7, 14, 49, 98 6 Q

Since the factors 1 and 2 always exist as factors, for # —> o0, we can be assured that the entire

set of Pythagorean triangles is generated. Examining the related Pythagorcan triangles =

2
c=2 = x=2+- = the two integer factor solutions 1,&2, so that
Y=z
V:3, X:4,Z=S; and y:4’x=3’::5.

2 o .
=4 = x=4 +—I => the four integer factor solutions 1,2,4, &8, so that
Ho=e

yo= 5.x =12, 2=15; ypubaoslo=lly p=bae=6o=llad p=ld ae j 215,

Hte. ...

Regarding the Table entry spatial propertics, the integer values ot s, correspond to the

principal quantum number and the physical electron shells K, I, M, N, O, P, Q, and the value

Dennis Lee



50

3

g 2 & & - . .
C/g = (\X}-’—ZC): 2n° at each n, describes the maximum number of orbitals allowable in any

e

corresponding clectron shell, wrt the total number of the assoclated group of quantum numbers.
However, for n >4, the maximum number of electrons indicated is not reached in the physical
domain. Hurther support is provided to the set of Lee’s Iquation-defined, shell maximum orbital
numbers {2.8, | 8,32,50.72.98}, corresponding to the number of protons in any particular atom,
through their generation of a sigma-algebra-related basis for the set of magic numbers of atomic
theoty, b 8,20,28,50,82, 126}, at which the corresponding number of protons (or neutrons) in
an atomic nucleus is the most stable. For example, one such relation, via the stable equipartition
of energy, might be:

{2, 8, 20=2+18, 28=2+8+18, 50=18+32, 82=32+50, 126=28+98}

Further properties require clarification.
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The Fermat-Lee Theorem

In this work, we demonstrate a possibility for the ‘wondertul proof, mentioned by
I'ermat, as not being able to fit into the margin. It is ‘wonderful’, in the sense that it is simple, and
precise. It is lett to the reader to decide whether this 1s indeed the proof descrbed by Fermat,

Proof that we cannot secure a solution in the integers, wrt x”" +y" =z", for x,y,ze "',
n>2,nel', is assisted via proof of the impossibility of solving x* + y* =2°, which is a
prerequisite for the proof that x*+ y* =z, The latter caters for the case of meven, and
containing no odd prime factors. We then note that if # contains an odd prime factor p, so that
n=kp, the equatdon x" +y” =z", can be written as (xk )F + (yk )p = (:k)ﬁ. One can also note
that we must always have x even, y,z odd, gcd(x, ¥, 3):1 [1]. Hence it will suffice to prove

the case for n>2, n € P, the sct of primes in canonical ascendance, n=p,: p, =2, p, =3,

There exist no positive Integers X, y,z€Z”, x even, ¥,z odd, gcd(x, v,z)=1 satisfying the
relatonship
x4yt =2", (1)

for n>2, n€ P, the set of primes in canonical ascendance, n=p, : py=2, p, =3, p, =5,

sos B wens

Lee’s Theorem

. o s s 3 ot r
Before beginning; we note that Lee’s theorem provides that for x, y,z € Z',and n=2, we have

(e ol o
o & (2)

5

2(x_}’—:c)= é = x* +}-’2

which also delivers the set of Pythagorean triangles.

Proof

The proof proceeds by construction of a general propetty of the binomial expansion of (x +y),
assumption of a related hypothesis, and its subsequent contradiction,

il

5 i i - ~ i) s e 3 g (R
Suppose a solution exists for any odd value of n>2, n € P, satstying x" + y" =z".

Dennis Lee



= oy
ey

iy Bermuate B loe e Tl T : om
L"n i*fcuzmii VIISSING oricl inegren Jid

Then we have
(,-\: + _V) = (: + c) (3)

whence the laws of binomial expansion provide that,

(x+y) =(z+e) (4)

is true for some positive integer ce £ ",

In the expansion of the LIS of lgn. 4, as

n n) n) n 4 n
xn i .‘C” ]_V"'---"‘ xn‘ i}/! + X xv" + _,V”:» (5)
0 4 n—1 7
o n . g n n! .
for any odd positive integer 7> 2, ne P, and = T(_), there are an even number of
: r rijn—r)!
. i n n " n
terms, paired as the two tetms containing ; , centred about the pair et ] et
r) \n-r VA
Pyt . . n\ H—=r " f BB
['his means that we can write each pair Jx ¥, and x' v, 0<r<n, as
¥ n—r
o . o,
! J’}r (xfr—lr + yn 2r ) (6)
"
Thus for n>2, 0<r <n, and cquating Fgn. 4, with the RIS of Eqn. 3,
n " nw n—l (!”l A=r r " n—=l n H
Gl S S I - ze o e (7)
0 1) | n—1 n
we have, for x" + " =z",
n—|
2. (n
Ci? — Z ‘ (xr 1/,J" (xu“Qr + }" n=2r )__ :l'cr (:ir-—lr + cn—lr )) (8)
=l \f"

Continuing the process iteratively, using cach (x”_zr + })n—Zr)’ implies that cach term can
be written as 2 product of (x+j,f). Similarly, cach term in (:-”"2" +:""2rl can be written as a
product of (:- + c).

Then writing (x +y)= (: : s C), we have that ¢” is divisible by (:- + c).

But this = ¢] z.

But z is odd, and this can never happen in the positive integers.
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Hence foreach n>2, ne P, x" + 3" = 2" is false for x.y.ze 7",
Q.E.D.
For example, using the Binomial 'I'heorem, we have:
Pyt =
(c+2)' =36y =30 = (x4 ) ~3ple ) = (s+ 7))
for related 3-D Binomial Theorem expansion residue f, (x, ), and
+yl=
(x+p) =s5x'y =500 —10x*p2 —1 Oty =t — S,W(x"’ +y’ )* 10x7y* (x+ y)
= (e +2) =Sy + y) £, (0, )~ 10577 (+ y)
=+ y)fi(xp)
for related 5-D Binomial Theorem expansion residue £, (x, )
Then from (z+¢)=(x+ 1), we have similarly,
2 +¢’ = (z+c)fi(z,0)
Hence from (x+ )= (z +¢), we have
x+y) =(z+¢),
So that we have
(x+ ) =52ty =Sxp* —10x°y? —10x%3° = (= + ¢f —5z8c—5z¢* —102°%¢> —1022¢°,
Suppose x° + y° =27, is true under the specified conditions, then its elimination provides that
G )flop) =+ +e)filae) = ¢ = (e 2 2)-(+0)fi Gre).
But since {z+¢) = (x + ), we can rewrite this as
¢’ =z +)filny)=C+o)fi(ec) = ¢ =+ )i (. y)- £ (o))

o = i B,

But then this implies that (z + )| ¢
However, since z is odd, whilst ¢ is even, this cannot be true, which provides our required
contradiction.

S8 % o - L
Hence x™ +y" =27, for x,y,z€Z’, cannot be true. Higher order cases are similar,

References: [1].  Elementary Number Theory, Revised printing, 1988, D.M. Burton.
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APPENDIX

A: Rings, Fields, Ideals, and Modules

‘The numerical elements dealt with in this work are the numbers expressible as the sum or
difference of any two natural numbers N :-{1,2, }, described as the set of integers
2= e =25 =10, 152, } I'he integers are also known as (aka) signed numbers or directed
numbers, and are recognized as being the set of rational numbers @, able to be expressed as a

ratio of integers % . for a,b in their lowest form,

(in which & # 0, and 1s usually non —negativc), such that the denominator b = 1. Modifications

of the numerical sets, such as N"=10,1,2,..., }, the set of non-negative Integers, and
4 = {1, P sy }, the set of positive integers exist.

A set, or class of numerical objects is a collective list of the elements, and is usually
denoted by encapsulation within braces { } aka cutly brackets. The list of clements in a set does
not require declaration; so {1, 25 35 4} is a set, as 1s {a, b,c,d } Both of the sets shown, are sets
of 4 objects. The study of sets/classes, and their relations, is known as sct theory. Sets and
subsets can be described as measures possessing the property of countable additivity, through the
definition of appropriate set functions operating on the set. The best known of these measutcs,
incorporates the sigma-algebra (Gmalgebra); denoting a set of elements containing itself, the
empty sct (@), the complements of all set member collections, and the countable union of all set
members; in conjunction with Boolean Algebra. The resulting synthesis is known as Boolean
Sigma-Algebra. The Boolean naturc indicated here describes the operations of complement
(A/B), (in which B is the complement of A), union (U), and intersection (N), as described
by George Boole’s (1815~1864) Algebra of Classes/Sets. A Boolean Sigma-Algebra with a
measure, is known as a measute algebra, or field of sets.

The set of real numbers R include irrational expressions and fractional powers. Together
with the set of integers Z, and set of rationals Q, they are examples of structured sets which

satisty specific criteria. For example, the sets Z,Q, and R, cach satsfy the triangle inequality, that

the sum of any two sides of a triangle measurable by Z, @, or R respectively, is greater than the
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third. A fundamental relationship in number theory provides that for any two natural numbers

azb, abelN, there exists (E) two unique values ¢,7 € N, such that

a=qgb+r, = #b, (1)
"L'his is the division algorithm. This means that given a base b, then » = {O, 1L,2,....6— 1}, and ¢
multiplies the value b. Regarding the fraction or ratio % , and its representation as a division
algorithm, then ¢ is the quotient, and 7 is the remainder or residue. Thus any positive integer in
Z" can be represented as a product ¢ of any other number b, plus a remainder 7, which is less

than the value b,
An extension to arithmetic, termed modular arithmetic, utilizes the base b, (aka the
modulus of the system), in order to represent any given number ¢, in the division algorithm, as

the remainder 7, and modulus, (or more commonly modulo, or mod) . This is written as
a=rmodb, or as,r, (2)

read as “a is congruent to » mod b7, or ‘a is congruent mod b, to »’, where 7 is the remainder
or residue. Mod is short for modulo, which means ‘to the modulus’. Thus, a is congruent to
modulo b, if ((I—i") is a multiple of b. Systems demonstraling modular arithmetic, denoted Z,
for finite modulus #, submit to the operations of addition (+), and multiplication (), in their
natural sense, so that
asr;, o=, 8 (a + c) = (r +S), where r+s5<b,
and (3)

ac =, r.s, where r.5<b.

Considering the modular arithmetic statement @ = mod b, ael, then there are an
infinite number of values a, generating the residue 7. For example, in a=2mod3, then
(r:{..._.,—7, -4, -1,2,5,8, }, whilst the residuc is equal to 2. Thus in the integers, the
residue is the (integer) remainder r € {0_, I, ...,b— 1} upon division by the (integer) base b. This
defines modular arithmetic, modulo b.

The sct of numerical components S encapsulating modular arithmetic, modulo #,

satisty requirements for 3 specific operations of the binary relation on the set S, together
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termed an equivalence relation, denoted (S,~). The clements are: Reflexive, so that an element 1s
related to itself; Symmetric, thus relating it to another set element; and I'ransitive, so that similar
symmetric images and ranges are related to differing symmetric ranges and images, respectively.
A set together with its equivalence relation (~) is termed a Setoid, written (S,w), or §. When
the (usually) finite sect, (aka class), of elements §, satisfics requirements for an equivalence
relation, the equivalence class [a] denotes the set of clements of WS that are equivalent to @, so

that
[a] = {x cxed, and a~x } (4)

The collection of equivalence classes are disjoint and exhaustive on the set S, and constitutes a
partition of the set 5.

A residue class, or congruence class [a], is an equivalence class for the equivalence
relation of congruence modulo #. Any two integers belong to the same class if and only (iff or
<) they possess the same remainder, ¢, upon division by s, Anthmetic can be defined in the

residue classes as
[a]+ [b] = [a +- b]_, [a][b] = [ab], a,b e {O, L2,...,n— l}. (5)

Representation of modular classes is usually via the least non-negative member. The set of
residue classes mod 71, is given by the set {m m=a+ kﬁ‘.}: 0<a<n—11s a residue mod A,
and £ is a non-negative integer. The class of least residues is an cxample of a complete residue
system modulo 7, containing one element from each class. 'The set of least residues is a partition

containing the smallest element in each class. The set of least absolute residues is the complete

. .o n n . .
st of residues satistying oy <a, < = k= {l, 2, H}. I'he Reduced residue system modulo

n, contains one element from each class relatively prime to #; Le. {1, 3,5, 7} is the reduced

residue system mod 8. For neZ' the number of positive integers £ < 1, relatively prime to #,
is given by Lulers function, denoted gﬁ(n), aka the Lluler Phi function, aka the Totient. It counts
the number of distinct reduced residue classes of an integer via its prime powers, so that
{p(pk”):pk (p—l). Duler extended his Phi function, to be a special case of Fermats Little
Theorem that for any # €Z, and p € the set of primes P in ascending canonical order, p, =2,

D, =3, py=35,....:pth, n= I{mod p), via Vae Z, ged(a,n)=1, a”” =1 (mod 7).
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Other well-known number-theoretic funcrions include r(ﬂ), the number of positive

divisors of n, ZL and U(n), the sum of the positive divisors of n, Zd. A function f( ) 18

dln din

termed multiplicative if ged(x, y) =1, and f{xy)= Fx)f(¥) The functions t(n), O'(f?), Eulers

Phi function, and the Legendre symbol, are all examples of multiplicative functions. I'or example,

when p s a product of not necessarily distinct odd ptimes p,, then the Legendre symbol
(a/ p') = (a/ pl).(a/ 7> ) .(a_/ r, ) is a multiplicative function, termed the Jacobi symbol.

liquations, and relationships, f(.‘c)(mod m), can be posed in modular arithmetic, and

solutions, where possible, provided. In general, a congruence equation secks solution(s) to
fle)=0(modm) or flx)=, 0, (6)

where f (x) Is a polynomial with integer coefficients, aka an integral polynomial, which can be
linear, quadratic, or of higher order. In order to locate a solution to a congruence equation, only a
complete sct of residues need be considered. The linear congruence equation ax = b(mod H) is
soluble & ged(a,n)|b. In a quadratic congruence equation, f (‘C) is a quadratic polynomial,

mod 7. A number g, congruent modulo 7 to a perfect square, describes a quadratc residue.
\2
, ‘ ! . ; 2 A2 42 p—]
For peP, 2 1t p, the quadratic residues are congruent to 17,27, 3% . | £ — , so that
= 9
A, Ed

2 ; . . - . "
x° = a(mod n) say, 1s termed a quadratic residue (mod n). When # is prime, then n=pe P,

and x* = a(mod p) is valid when, for ged(a, p) =1, the Legendre symbol a/p =1 (This is also

<

written @ | p =1, but can then be mistaken for divisibility). It ged(a, p) # 1, then a/p =-1. By

; [fz',]
. e . . 2 . ~ "
Fulets  Criterion, for p an odd prime, a/p=at? ‘(mod p), whilst for p cven,
{/71;!1

{(mod p).

Returning Lo sets of clements, the notion and application of sets can be refined to that of

:_J,’,rfp =—]

groups, through a requirement for all related set objects to conform to a collective of specific
requirements. These are:

Closure: The smallest closed set containing the intersection of all closed sets of the

solution set. The sets are refined via adherence to closuge under the operation o, such that in

consideration of a group G, the operation o satisfics

(I) Association: Va,b,ce G = {F} ao(boc)= (aob)oc,
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(2) Identityy: JeeG: wee=c¢ocu=a, Vae(,
(3) laverse: VaeG, 3a'eG: aecd =da oa=e.

Groups can be denoted (G , 0), or <(_3q0>, with appropriate clarification of operation o.
Eixamples of groups include; the set of integers under addition, (Z, +); the set of real numbers
under addition, ([R,%); the set of complex numbers (excluding zero) under multiplication,
(@: {“P') or (C s X); the set of real 2x 2 matrices under addition (szz: +>; and the set of
vectors in 3-1) space, under addition (Vm ,+). If H is a subset of G forming a group under
operation o, then H is a subgroup of G. For instance {l, i, —1, ﬂi} is a subgroup
({1, 5,~1, =i} x) of (C,p%).

Many collections of objects are not as well-defined as a group; semi-groups describe sets
possessing an associative binary operation (usually +) under which it is closed; Monoids arc
semigroups with an identity; and Groupoids are scts possessing a binary operation under which
the set 1s closed. Monoids are Groupoids which (usually) are commulative.

Any two sets A4 and B, are such that their elements ovetlap (AﬁBi@), or are
disjolint (A B = @). The two sets are disjoint iff the properties of membership are mutually
exclusive. The union of the two sets is not empty (4 U B # @), iff, at least one of the sets is
non-empty, and (A UB= @) <> both 4 and B are empty sets. The difference of 4 and B,
denoted A\ B, is the set formed by all elements of A, that are not elements of B. 4\ B can
also be written 4 — B. When members of a set B, lie completely outside of another set 4, we
term those members the (relative) complement of 4 in B, B\ A, or the complement of B,
relative to 4. A similar concept is provided by the symmetric difference, A+ B, or A®B, or
AVB, desctibed by the set of elements belonging to one, but not to two, of the indicated sets.
This is also the union of the relative complements of 4 and B, (B\ A)w {4\ B)

In a group G, such that elements a,b,¢c € G, the cancellation laws, which are an
immediate consequence of the existence of inverse elements, are described via:

i/ [faeh=aoc. then h=c.
/. If bea=coa, then b=c.
Given a subgroup H of a group G, then for any clement x € G, 7 a left coser xH,

forming all of the elements xh, # € H. Right cosets arc defined similarly, as 3 a right coset Hx,
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with elements Ax. The cosets of H in G are disjoint, and generate a partition of G. When H is
4 non-commutatve group, then xH, and Hx, may be distinct. The set of aligned canonical
objects formed as the cosets of H, are known as a transversal of the 1ef:'t/right coscts of H in
G. Transversals generate precisely one member, ¢, of the transversal T, for which xH = gH.
When xH = H, then H is denoted 2 normal subgroup. Normal subgroups are invariant under
automorphisms, which are one-to-one correspondences known as isomorphisms, between 2 or
more sets, possessing an identical domain and range, such as a permutation; the invariant
automorphism is found to be the kernel of some structural propetty determining mapping, or

homomorphism, preserving domain qualitics in its range, such that
B(x* y)=6(x)o8(»). (7)
Group homomorphisms satisfy the relationship
O(x) = 0(x)o(y) )

A multiplicative function is thus necessarily homomorphic. In conjunction with isomorphisms,
automorphisms, and homomorphisms, other morphisms, or mapping of sets, exist. These
include, but are not limited to, epimorphisms, monomorphisms, and endomorphisms, which
deseribe surjective or onto, Injective or one-to-one or into, and homomorphic automorphic
morphisms, respectively.

The set of elements of G which commute with every member of the group is termed the
centre Z(G). The centre Z(G), is equal to the intersection of the subgroup C, (Jc), known as the
centralizer, consisting of all clements commuting with a particular clement of a subgroup H of
G. The centre of a group is a normal subgroup.

Just as the concept of sets is strengthened and refined by the requirements for admittance
as a group. The concept of groups is more properly characterized through adherence to specific

operations. The refinement begins with the definition of 2 ring R, satisfying:

Closure (+, x): R, is closed under the operations of addition and multiplication, satisfying

each of the six properties:
1. Associative (+): Va,b,ce R, a+ (b + (:) = (a + b)+ c.

2 Abelian (+): Va,beR, a+b=5b+a.

{5

Identity (+): d0eR: a+0=a, YaeR
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[lere, 0 is a ncutral clement known as the zero element. Construction as a ring

= ul=0, YacR.

r

1. Inverse (+): Foreachae R, 3—aeR: a+ (— al=1,

Associative (x): Ya,b,c e R, cz(bc): (ab)c'.

n

6. Distributve % (+), (+)><: Ya,b,c € R, a(b + c) = ab+ac, and (a + b)c = gc + be.
If the ring R, 1s commutative, then
7. Abelian (x):  Va,beR, ab=ba.
And if it is a commutative ring with identity, then
8. Tdentity (x): 31(#0): a.l=a, VaeR
Where A any divisors of zero, (which occurs often in vector or matrix calculation), then we can
define an integral domain.
9. Null Zero Division: Va,beR, ab=0 onlyif a=0 or b=0.

A commutative ring is an integral domain precisely when the cancellation law holds in
(R, x).

The concept of a field <>

10. Group Inverses: lloreach ae R, a#0, da~ a‘a=1.

Every field is an integral domain.

Examples of rings, denoted {R, +, x} or (R', @, ®> or (R, +, ><) etc., include the set of
even integers (ZZ,+), and the sct of 2x2 real matrices (M,,, .+, ><). A particularly relevant
example of a ring is given by the set -[0, L2 ..., n—]}, under the operations of addition and
multiplication m(ﬁul() neN denoted Z,. The set of integers Z, demonstrate an example of an

integral domain, as docs (Z”,+, ><) = ({0, ],3,...,!1—1}, +,% ), for n=p, € P. Fields include @,

the set of rational numbers, R, the sct of real numbers, and €, the set of complex numbers. The
fields of primary use in this work is the sct of integers modulo p,, described by

Z,= ({0,1,2}...,;7— l},-:—,x), p, € P. A subset of a ring which is a ring satisfying the same

operation as the larger ring, is termed a subring.
The ring properties delineated above can be augmented with further properties, such as
possession of an identity, or unity (neutral clement), describing a unitary ring. Similarly, a ring in

: 3 B = :
which ecach non-zero element @, possesses  an  INVersce clement qa =e¢=da d, tor
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(multplicative) identty e, is a division ting. Any commutative division ting is a field. The
division ring H of quaternions, describes a non-commutative division ring, and is thus, not a
field.

Some rings are able to have other rings embedded within them. In this case, the larger
ring is termed an over-ting. When an over-ring O of another ring R possesses some non-zero
regular'elements b, such that Vae R, ab=0 or ba=0 < a=0, the elements are of the
form al;_I or b™'a (for a right and left quodent ring, respectively, or 2-sided normal quotient
ting), and Vb e R, b €, then we call the ring a quotient/factor/residue class ring, A
description of factor rings can also be provided via the concept of ideals. An ideal is a subring of
a ring, which is closed under subtraction, and multiplication, by each of the ring elements. That
is, VaeR, Vxel: ] isa subring of R, ax,xa e I. Note that for non-communicative sets,
only one of ax, and xa, may occur. ax is the left ideal, and xa is the right ideal. Otherwise,
without qualification, the ideal is two-sided, and occasionally called a normal subring. An example
of a subring is given by the set of muldples of any fixed integer in the ring of integers.

lUsing the concept of ideals, and cosets, 2 factor ring can be described as the ring R/ K

formed by the clements acting as cosets of an ideal X in the ring R. The cosets, called residue

classes, are equivalence classes, where elements diffes by a member of K. Thus the residue class

Is one of the equivalence classes that is a coset of an element of an ideal, or simply, any element

of a factor ting. The operations of (+, X), or its equivalent (+, ) on the set of residue classes

modulo 7, denoted Z, satisfy requirement for a commutative ring with identity. When p is

prime, then " - possesses no divisors of zero, and Z, is a field. Any integral domain has a
quotient ring that is a field, the field of fractions.

The sum and product of factor ting components ate unique, and their coset sum or
product, equal the sum or product of their individual cosets, respectively. If ¥R = R for ring R,
and ¥ € R, then u is termed a neutral element or unit. Units are multiplicatively invértible
elements of a ring, integral domain, or other related structure. For example, the set of constant
polynomials P (x) are units in 2 polynomial ring over a field. The countet-image of the zero of
action of the factor ring image, (which possesses a unit element if R does), is termed the kernel.

Factor rings are a special case of factor spaces, or quotient Js-paces, which utilize set
structure to impose a similar structure on the set of equivalence classes with respect to (wrt) a

given equivalence relation. Thus, from the group propetties: G/H of a group G by normal
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subgroup H, the set of cosets of H in G, is given by the factor/quotient group. Similarly, from
the ring properties R/ K of a ring R, by ideal K, the set of cosets of K in R, is given by the
factor/quotient ring. Examples of refined factor/quotient spaces, include factor vector spaces,
factor normal or Banach spaces, and factor Hilbert spaces. When a space S can be described in
terms of a subspace 7, and the factor space S/T, such that the 3 spaces possess the same
property, it is said to possess the three-space property. Possession of an upper bound, or lower
bound, wéuld be sucha property, termed a polyproperty.

Returning now to the concept of ideals, a left, right, or two-sided ideal, can be extended
through its generation by 2 single element. Such a generation is termed a principal ideal. When
the principal ideal satisfies requirements for an integral domain, the principal ideal integral
domain is termed a principal ideal domain (PID). If every ideal in a ring is a principal ideal, then 2
principal ideal ring (PIR), similar to a PID, is generated.

 Inan integral domain E\{O}, there can exist a mapping g, termed a gauge, into the

non-negative integers:
Va,b e EN{O),  glab)> gla):
for beE and aEE\{O}, dq.,r €E, (9)

for which b e ga+r, and either » =0, or g(r) < gla)
When gla)=aeZ, and a satisfies conventional addition and multiplication, then b € ga+r
reduces to the division algorithm for integers. A gauge-bound division-algorithm-satisfying
integral domain, is termed a BEuclidean domain, or Euclidean ring. A Euclidean ring is a PID. An
example of a Euclidean ring is the set of polynomials over any field, with the gauge being the
degree of the polyndtrﬁal.

The Gaussian field consisting of complex numbers u+iv, u,v € @, contains ~the

algebraic integers in the Gaussian field, known as the Gaussian integers a+ib, a,be 4. The

Gaussian integers are a Gaussian domain, or unique factorization domain. In a Gaussian domain,
an integral domain provides representation of every non-zero non-unit, as a finite product of
irreducible elements, in which the set of elements is unique. For example, in the Gaussian
domain of Gaussian integers, 5= (1+2i)(1—2i) is reducible, but 3 is irreducible, and hence
ptime, precisely because it is in 2 Euclidean domain. _

Another refined group structure, is that of a module. A module is a commutative group

M, satisfying left, or right, multiplication (termed exterior multiplication), or both, that is
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associative, distributive, and multiplies group elements by elements of a ring R, (called scalars),
to generate group elements. M is then said to be a module over R, or an R —module, If, in
addition, R is a unitary ring, and i o g = g for ring identity #, and g any group element, then

we term M a unitary R ~module. An ideal in a ting R, is an R —module. Every commutative

group is effectively a module over Z, and every ring R can be viewed, as an R —module over

itself. Submodules can exist as a module over a ring, within another module over the same ring,
with the same addition. A condition, termed the ascending chain condition, ensures that no
ascending chain of submodules LheLe..B I,, each member of which is contained in the
NExt, possesses more than a finite number of distinct members. This is equivalent to the
maximum condition, ensuting that every non-empty set of submodules finitely generated by a
finite number of elements, so also satisfying the finitely generated condition, possesses a maximal

member. When a module satisfies the ascending chain condition, it is termed a Noetherian

module. Being Noetherian is a 3 —space property. The set of integers Z form a Noetherian

Z-module, but the rationals Q, do not.

Similarly, a condition termed the descending chain condition ensures that no descending
chain of submodules I, 21, 2...01,, contains more than 2 finite number of distinct
members, so that for every chain, In:1, =1V m>n. This is equivalent to the minimum

condition on a module, that every non-empty set of submodules possesses 2 minimal member.

An Artinian module satisfies the descending - chain condition. Every Artinian module is a

‘Noetherian module, but the contra is not necessarily true. The integers Z are a Noetherian

module, but not an Artinian Z-module. The application of the maximum, and minimum,
conditions, extenas to groups, rings, and other related structures.

Mappings can be provided between one algebraic structure and another, whilst satisfying
different conditions in the respective structure domains and images. When the structural
properties of a domain are preserved in its image, such that operations * in the domain, and o in
the range are satisfied, we term the mapping a homomorphism, desctibed in Eqn. (7). In group
theory, homomorphisms  are sutjective (onto), unless otherwise indicated. In a ting

homomorphism, the mapping is between rings, such that

Vx,y, O(x+ y)= 9(x)+ d(y), and H(xy) = Q(x)H(y) (10)
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In 2 module homomorphism, the mapping is between modules, such that for Vx,y € an
R —module,and r € the ring R,
O(x+y)=0(x)+0(y), and O(rx) = r6(x).

1)

If R is a field, then & is a linear mapping. The natural homomorphism or epimorphism, is the

homomorphism o from a group & to the factor group G/K, that is defined, for rings and
modules by its mapping to a left/right coset U(x) =x+k ot U(x) =k"+x, and for groups by
.U(x)=xk, or U(x):k'x. Related epimotphisms exist for rings and modules w.r.t. ideals, and

submodules, respectively.
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APPENDIX

B: . Module Mirror Primes (MMPs)

The set of natural numbers N = {1, 2,3, } can be represented modulo 2, as the set {l, 2} in
row format as detailed in Table (a), or column format as detailed in Tables (b~c). The
represeritations in Tables (a~c) support construction as the odd numbers x € N taking values
congruent to 1mod2, and the even numbers taking values - congruent to Omod2. The

grey-shaded value 2, in Tables (a~c) indicate the only (even) prime.

Folded numbers (FNs)

The numerical layout of representations in Table (d), and Table (), are examples of folded
aumbers FN(n)s, for n e N, where Table (d) describes the layout of the folded even number
4, FN(4), whilst Table (e) describes the layout of the folded odd aumber 5, FN (5). The choice
for start row for the Vﬁ.h;les L2,..., is arbitrary, but we will aaopt the convention here, of

beginning the sequence with the value 1 i the lower row. Note that subsequently, this may

include an overhang in the upper row, as shown in Table (e).

@ (b) (©

Note also that the representation of a FN is a construction of choice only, since for example, the

odd number 7, can be written in column format in the manner of Table (f).

®
1 E=2
=
-
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In all that follows, any reference to a FN is described, for example, by the form of Table (g) for a
folded even number 6, FN(6), and Table (h) for a folded odd number 13, FN(13).

® o ®

Much of tiw work in this text, deals with the folded even number 30, represented in Table (i)
below. The prime numbers contained in the set of mnatural numbers of FN(30),
{2,3,5,7,11,13,17,19, 23,29}, have been highlighted with a grey shaded background. In
addition, the prime number 31 has been included, and will be dealt with shortly.

Mirror-Primes (MPs), and Module Mirror Primes (MMPs)

Note that some of the ptimes in each lower and upper row also coincide in columns. In Table (1),

these are {7, 23}, {l 1,19}, and {13,17}. We shall term each pair of coincident primes, as a

mirror-prme (MP) of MP(H), where n €N is the value of the FN argument. If #is a module of
the form :I:"_{p, = pi..pz....-pi.....pr, p, € P, the set of primes in canonical ascendance,

- p,=2, p, =3, p;=5,... we term the MP as a module mirror prime (MMP) of #, MN[P(n)‘ .

MMP measure structure details, which can be omitted on a first reading, are delineated in
3

Appendix C. Since, I p, =2.3.5=30, then those primes are omitted from the presented list of
=l

primes shown in Table (). The set of MMPs of {N[MPGO)}, is given by
147,23}, 11,19}, {13,17} }. OFf special note ate the pairs {1, 29}, and {¥, 31}, both highlighted
With a bold, large rectaﬂgle,-the former of which may contain a prime, and the latter of which can
appear as a prime, 2 MMP, or a MP, dependent upon the value of neN. In addition, the; odd
squares 9, and 25, have been highlighted with a bold, small rectangle. Also, the twin primes
{1 1,13}, {17,19}, and {29,31}, can be discerned. Note that the values in 2 FP expansion, above
the value 1, and the asterisk shown, will always need to have their primality, or otherwise,

verified.

* Dennis Lee
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* 1|23 ‘ 41516 ‘ 7|89 fw]11]12]|13 14{15

Some larger FNs which actually require representation as a (possibly lengthy) linear form, can be

represented as stacked rows of a smaller FN. For example, the FN 210 of length 106 elements
detailed " in Table ), FN(ZIO), is represented as seven rows corresponding to the unfolded

folded number 30, with the 7% row folded again, in half. Noting that the module

4

I p, =2.3.5.7=210, primes greater than 7 are highlighted with 2 grey background, and squares

by an emboldened small rectangle. MMPs of FN(ZIO), such as {l 1, 199}, are then represented as
a full shaded column of two primes, between upper and lower emboldened lines. The set of

MMPs of the FN and module 210, are indicated here 25, MMP(210) = { {11,199}, {i3,197},
{17,193}, {19,191} {29,181}, {31,179}, B7.173} {43,167}, {47,163}, {53,157}, {59,151},
{61,149}, {71,139}, {73,137}, {19,131} {83,127}, (97,113}, {101,109}, {103,107} }. Note

that the list of paired rows should ideally be viewed as being a single pair of rows.

)

iag
2y

s

-
=y
-
ey

2 2 2 2 2 2 2z 2 2 32 2 1 1 1 1 1 ;) i

0 0 0 0 0 ¢ 0 0 0 0 9 9.8 9 9 9 g .9 g g 8 8 5 8 8
0 9 8 7 & 4 3 o s 7 6 5 485 28 0 9 8 7 5 5 4 3 2 g
1S 1 SEE 1 1 1 EEE 1B 2 2 2 o 2ol 2 2T =
12 3 4 5 6 7 sflolofglogm 4 5 68 s B0 0 1 280 sls|ls 7 s i
E B A AT iR T
BEE 7T 7T 7 7 7HE 7T 7 7]e[lelEic 6 6 .8i6 8 6 5 5% s 5 5 5 50%
0Fe 8 7 5 5 4% 2 1 o|lo|lsSM s 5 4% 2 .1 o o 8 716 5 4 3 2 %
SR s 3 3 3 o@E 3 3 4EE abE 4 4 188 15 ] 5 5.5 65 5 5 5 &
OFE 2 2 4 5 sFE 8 9 o 3@ oW 4 s 5 7z s|lalo 1 28 5 6 7 8. 9|
@R 17T 1 T 1 1,7 TEE TEE T T T TR T TT
5.454444444443;33"333333323222222222
SS8 8 7 6 5 4 3 2 1 ogERegEe 5 4 3 289 0 9 s@E s 5 4 3 2|1
68 6 6 6 65 cE e 6 7 w7 o= 7 77 7 7 7 s[s]& & s & 5 & 3 g
OLt:i2 3 4 5 6'#i8 9 0 % 2.3 4 5 8 7 @ s oft1l2 % 4 5 s5 7 8 @
Y - ]
2 1 1 1 1 4 1881 1 156 o@s 0 o
O 9 8 7 B 5 4@F 2 1 oG 8 e g 5
_ = TEE T o 1
9 9 9 9 9 9 9 9 9 a O 0 G.0 0
0o 1 2 3 5 6 8 9 ofE 210 4 5

A representation of the first 300 row pairs of FN(2310) in Table (k), corresponding to the

5
module ITp, =2.3.5.7.11=2310, is detailed below, excluding the primes {2,3,5,7,11} In the
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table, primes greater than 11 are again highlighted with a grey background, squares by a small

bold rectangle, and MMPs of FN(2310), such as {17, 2293}, are represented as a shaded column

of two primes, between 'upper and lower emboldened lines.

&)
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Table () utlizes the 30 —column stacking of rows of length 210, to portray the collection of
twin primes, such as (I 1,13), found in the set of natural numbers 1,2, ...,2309, 2310, with the
exclusion of the twin primes (3, 5), and (5,7). Note the inclusion of the square 169, indicated by
a small bold rectangle, in the grey-shaded pair (167,169), and the related grey-shaded twin
prime-pair (1427,1429), situated in the same stack column. The inclusion demonstrates that

s

prime nurhbers and prime-pairs can be related to smaller squares, as well as other smaller primes,

in the same stack column.

@

1 7] 2] H 59 | 71 ] 101 ] 107 | 137 | 148 | i6r ] 179 | 191 | 197
13 19 | -31 43 81| 73| 103 | 100 | 130 | 150 [ des ] 181 | 183 | 1se
227 | 228 280 | 281 | 311 347 19
229 | 241 271 | 283 | 313 348 421
) 761 521 : 569 559 517
433 463 523 571 601 619
641 659
643 661

809 821 827
81 823 829

857 881 1019 | 1031 1049
859 883 1021 1033 1081
1061 1091 1151
1063 1093 1153
1229
1231

1277 | 1289 | 1301 1319
1279 | 1291 1303 | 1321

427 | 1451
1429 | 1453 .
1461 | 1487 1607 | 1618 1567
1483 | 1489 1608 | 1621 1869
1697 1721 1787 1871 | 1877
1699 1723 1789 1873 | 1879
1931 | 1949 1897 | 2027 2081 | 2087
1933 | 1851 1999 | 2029 2083 | 2089
2111 2129 | 2141 7237
2113 2131 | 2143 2239
2267 2309
2269 2311
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APPENDIX

C: Module Mirror Prime (MMP) Structute

Considering any module of length ,Ijl Pi = Py-Py-....p,, which we write as g P> ot simply
Ilp,. 5 integer value positions of particular relevance are:

a). .‘\'Hpr = P1-P;---- .p,; the maximum length of each module.

b). nllp,,n=p. . ; the maximum length of 7 modules of type (a).

)i nllp, +1, n= {O, e - }; the start value of each of the # modules.

d). [\/l—[—pr JH; the smallest prime number greater than \/l_Tp: . This is the largest prime
number required to have its multiples temoved from the module(s), up to the value of its square,

2
[Lfﬂp, JP[J - This is necessarly inclusive of the module maximum value Ilp,, but less than

twice the maximum module value 21Tp, .’

P12 . .
€). (L/Hpr ] ) ; the largest value able to be included as removed from the list of generated

primes, via removal of the multiples of ecach prime P, =235,...,p, such that

P;<p = [\/H‘R]H'

Aligning some of these fundamental values along a standard, positive number line, delivers the

alignment of integer values: °

IIp, 2Adp,

Ilp,
2
l l i

Then considerlng the three values HED = ,[1/11 FJH, and L#Hprﬂ ]P[, we can note

immediately that [.,,'I—Ipr ]P[ < L/Hpr - }H, placing the former to the left of the latter on the

1
number line. - Now considering HEU, > L/Hprﬂ ]P, this is true precisely when

Xt \/Hpr >[\/Hpr+1 ]P[, which implies when 1}0, is larger than [1/ prq]. Using

Dennis Lee
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Bertrand’s postulate established by Chebyshev [1], where p,,; is a maximum value, then

dp:n<p<2n-2 = p, <p,,, <2p, —2. But for the p, th prime, this means that

25 Poa<p,.+ (Zpr - 2): 3p, —2. Since Hf:" >3p, —2, for r >3, then we can _conclude that

E'i> [,prHl ]PI, r&d. |

2

In*addition, noting that for some positive integer ¢ € Z*, e <Ilp,, we have

(IIp, + 05) < 21p, = (q/Hpr + cz)z < 2Ip, — ([@ ]PT <2llp,, then

[L/Hpr ]PIT lies between l-Ip,,_ and 2IIp, on a standard number line.

30 . Finally, from [[1/Hpr+1 ]Pljz, we have ([JHPHI }sz :(qfl—[prﬂ +a)2, and expanding
the right-hand side, = (,fl_[J@::'H_1 +o:)2 =Ilp., +B, feZ . Since p,, >2, then we can

_ - 2
deduce that ([.,;Hpm ]Plj is on the tight-hand side of 2Ilp, on a standard number line.

Including the derived values and their relationships onto the number line previously shown, we

have

By w, (V1)

| Jesesmmmrms s |

T (T

. 1] P2 .
The grey shaded linear region indicates the stretch of values }[\/Hp,,] ,[[\fnpr] ) l:, within

which all primes and prime pairs able to be removed, are present. The removed factors,

kp,, i<r, ke Z, are symmetric, wrt the initial module [LIIp,] about the values

—Hg’*’ :A+D=B+C=1lp,, and Ilp, ~A+Ilp, -D=1Ilp, =1Ip, ~B+Ilp, —C. The pairs

40 (A,D), and (B,C), form Mirror Factors (MFs) (Section 1) of the FN, FN(IIp,) (Appendix B).
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Now relating concatenated lengths of the intervals [1, Hp,], and stacking the lengths [I, Hpr]
below each other in the form:

[lp, +1, 211p, ]

[2Hpr 7+ 19 3Hpr]

[an, +1, (n+1)Ip, |

l-erHpr + 1’ (pr-t-l + I)Hpr]’
We can envisage that any prime, or ptime pair appearing as uadeleted in the list [1, Hpr], will also

be available in some of the list of intefvals below it, in the manner shown below, for prime pairs

(x, X)= (pi,pj)e PxP, (pj =p. +2) and single primes (0)= (P;)E P

|
1
- = i, 1 Ve LY S i
& s \JI o FL9rES
'
. N3z O 3L -
T o v Firs
'
1
1
— bR YS Fa Fal SN e
sy o 1= Fa sy

Untl such time as the appropriate ptimes and multiples of primes have been deleted.
The number-line analysis shown earlier indicates there will be a region in the first two

(rows of) modules in which any undeleted number is ptime

corresponding to the P, concatenated modules of length Tp, :
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(P r+l )Hp r
60 We can now note that in the second module, the region highlighted grey, represents the

2
ascending, values in the interval of length ([ﬂﬂp,_ ]W) —Ilp,, given by
2 S
|:(I_Ipr +1),[[1fﬂﬁr ]P[J :i Appealing to Bertrand’s postulate again, (or otherwise), we can atgue

that for some value £ < %, VIp, : p, > 2, we will always have

(\/Hpﬁb")z (Hp, 2’]:&2“,
p 3 : . ([ J—]r) 3Hp,,
~ (W) -, <2

Hence the list of non-deleted primes in the second-row module is certainly greater than I1p,,,,
3111?,

i 317
by line 25, and from above, is less than ZP -, so on the LHS of

— . |

Ip, 311% 21p, - ' ([\/Hpm ]”T
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Including these bounds into the first and second row module number-lines, describes the

relationship indicated in the figure above, which is true for all modules Ilp, :

On these number-lines, we have the regions:
A). From 1 to (L/Upm ]H]z, with the grey shaded area [L/H . ]P!,[L;‘Hpr ]PIJZ:I, which

is less than 2IIp,. It comprising the non-deleted ptimes contained in the intervals ]I,Hpr] and

P2
[Hp, +1,[[,/Hp,] J [
B).  The numberline of length erDr“(l_-[Ur +l), containing the grey shaded area of

length [[ﬁ }P!JZ—I—L@ in the second row module. This is the interval

[H;p, +1,([\/H7,]”)2[, containing the non-deleted primes in the number-line valucs greater

than Ilp, corresponding to the positions |
Tip, +1<Tp, + YT, | < 115, + 2] < (AdE

&  “The sgion [Hp, W, [, + [ | —1], which coincides with the first tow

module values > [JHpr ]H, but less than [ﬁﬂpr - ]P[. This means that any non-deleted prime-

paits within the region [Hp, ez [q,’ Hp ]P! — l:' in the first row module, will also appear in the

second row module, but will not be guaranteed to appear in any larger row position modules.

Z
D).  The non-deleted prime, and prime-pair list in the interval ‘:[\/ He, i ]Pl,([\/ Ip, ]H) ] of

¢ 2
the first row module region coinciding with the interval [Hp, + [\/l_m JFI,[LIHp, - ]P!) J of

the second row module, of length (([ /Hpr:] ]P!)z i, - [ ’__Hpm }P! N 1).

Some primes, prime-pairs, and squares appearing in the cotresponding region in the first
row module, will also, necessarily, provide the potential for other, larger primes, to appear in the
same positions in subsequent row modules. Subsequently, by Bertrands theorem (ine 23) ot

otherwise, for some ptime or square in the respective first row module region, there must be

Dennis Lee
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generated a prime in at least one of the next p modules of the larger set of modules of length

2,.11p,. Note that the same cannot be said of the generation of a twin prime (TP).

Referring now to the bounds

T <l <o, (T <2< (5T,

as we move from one bound to the next, LHS to RHS, every bound increases in value faster than
the bound preceding it. This means that as the value of p, increases, the distance between the

bounds increases faster towards each RH bound; so each interval in the list of bounds above,
increases faster than the interval before it.

If we can demonstrate that a TP (p,., p,+ 2) 1s always generated in each module, then
we can prove that 3 an infinite number of TPs. However, it may be the case that a class of TPs

evolve via two distinct primes p,,p, : p, # p, £2.

Dennis Lee
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APPENDIX

D:  Prime Modules of Modules of 30 Units (M, ,,,)

The following figure demonstrates the construction of the prime modules p,, denoted

module, , of modules of 30 units, mbdule30, cach bounded by the upper rectangle in columns
(@ ~ p,dealt'with in Section 5, page 28, (&) ~ Pyys () ~ Piss() ~ Fyrs(§) ~ Pros () ~ o (ex)
P (n) ~ Ps1> each with their default T'win Ptime Indicator (IPI) states, (Section 5, page 25),
in the column to the left of the column of modules p;, and-their modified TPI intersection states
in the c.élumn to the right of the column of modules Pis

The'square of each value p. in the module »,» 18 indicated in its module,, form, by a

small, bold, rectangle around the corresponding value. Note that in column (n), the square value

in row 33 is intended to indicate that it lies outside of the first module, and is a repeat of the
value (3)1 in column two. In each module 5 ©of modules;), denoted M sxags The 30
partitioned values {2,3,...,30, (3)1} are indicated, with the final value in each M, 5, being 30.
The two non-TPI ptimes 7, and 23, highlighted as shaded dark-grey squares, and the six TPI-
related primeé {(1 i 13), (l 7,19), (29, (3)1)}, arer highhghtéd asr Vshaded light-grey squares.

The column of unmodified TPIs in column (c), are all in precisely the same state, with

only the primes 2, 3, and 5 removed, and are thus each of the form of the module of 30 units
described in Section 2, page 14, excluding M, ,,. Each column of modified TPIs to the LIS of
cach column module is comprised of the concatenation of the modifications made to the first p,
rows of the module,. Correspondingly, excluding M, ), which includes column (e) of
modified TPIs, a concatenation of the ﬁrst. 7 modified TPIs in row 1 to row 7, each
subsequent column of TPIs in the column to the RHS of each module,_, is generated through
use of the operation of intersection of TPI states. For example, column (h) to the right of
‘module,, in column (g) is formed via columan (h) TPIs = (colunn (¢) TPIs N column (f) TPIs).
Every column module, excluding module,, display their repeated p, — division modified

TPIs;,, to the immediate left of the tespective modules, and the module-intersection modified

TPIs,, to the immediate right of the respective modules.

Demﬁis Lee
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